elige 3 nmeros naturales diferente, los que quieras por ejemplo 345 ahora sumalos (12) ordenalos de todas las formas posibles y suma los numeros que se formaron (2664) enseguida divide el resultado entre el primer resultado osea 2664/12=222 y eso pasa con aulquier numero la pregunta es por que pasa esto
Respuestas a la pregunta
Hola
Sean los tres números naturales, "a", "b", y "c".
Sabemos que su suma es 12, o sea que: (a+b+c) = 12
Los reordeno y formo los números
abc, acb, bac, bca, cab, cba --> son seis números posibles
Los sumo uno debajo del otro y me da el resultado, "resultado"
Pero cada número es
abc = 100 a + 10 b + c ; acb = 100 a + 10 c + b;
bac = 100 b + 10 a + c ; bca = 100 b + 10 c + a
cab = 100 c + 10 a + b ; cba = 100 c + 10 b + a
Al sumarlos todos tendremos el "resultado" = 2664
Sumo por partes para que quede más claro.
Al sumar las centenas tendremos:
100 a + 100 a + 100 b + 100 b + 100 c + 100 c =
= 100 (a+a + b+b + c+c) = 100 ( 2a + 2b + 2c ) = 100 · (2·(a+b+c))
= 100 · 2 · (a+b+c) = 200 (a+b+c)
De modo análogo lo mismo con decenas y unidades
Resultado= 200·(a+b+c) + 20 · (a+b+c) + 2 · (a+b+c) =
Saco factor común (a+b+c) y obtengo
= (a+b+c) · (200 + 20 + 2) = (a+b+c) · 222
Como (a+b+c) = 12, entonces Resultado = 12·222
En general siempre ocurrirá que
Al dividir (a+b+c)·222
entre uno de los factores que es (a+b+c)
siempre dará 222 que es el otro factor
Un saludo