El producto de dos números negativos es 90. El numero mayor excede en siete a un tercio del numero menor.¿ cual es el numero menor? una ecuación que permita resolver el problema?
Respuestas a la pregunta
Contestado por
7
sea a y b los números ⇒ (a) (b) =90 ...................(1)
si (a) - (b/3) = a - b/3 = 7 ∧ b = 3a + 21..................(2)
reemplazando (2) en (1)
(a) ( 3a + 21)) =90
3a² + 21a = 90
3a² + 21a -90 =0
3a ------------------ -9
a------------------- 10
(3a - 9) (a + 10) = 0
3a - 9=0 ⇒ 3a = 9
a = 3
a + 10 = 0 ⇒ a= -10 tomamos el valor negativo y tenemos
-10 es el numero mayor y el menor es : (a) (b) =90
(-10) (b)=90
b = 90/-10
b= -9
si (a) - (b/3) = a - b/3 = 7 ∧ b = 3a + 21..................(2)
reemplazando (2) en (1)
(a) ( 3a + 21)) =90
3a² + 21a = 90
3a² + 21a -90 =0
3a ------------------ -9
a------------------- 10
(3a - 9) (a + 10) = 0
3a - 9=0 ⇒ 3a = 9
a = 3
a + 10 = 0 ⇒ a= -10 tomamos el valor negativo y tenemos
-10 es el numero mayor y el menor es : (a) (b) =90
(-10) (b)=90
b = 90/-10
b= -9
Otras preguntas
Matemáticas,
hace 8 meses
Geografía,
hace 8 meses
Física,
hace 1 año
Castellano,
hace 1 año
Matemáticas,
hace 1 año
Castellano,
hace 1 año