Matemáticas, pregunta formulada por elverperez727, hace 6 meses

el producto de dos números es 36 y la diferencia es 5. hallar los números.....................ayudaaaaa xfvr​


magyrosa123: holaaa

Respuestas a la pregunta

Contestado por limachez81
1

Respuesta:

9 y 4

Explicación paso a paso:

Producto

4x9=36

Diferencia

9-4=5


elverperez727: lo podrías resorver en una ecuacion xfvr
Contestado por Chacacha
2

Respuesta:

X₁ = 16,145    y   Y₁ = 11,145

X₂ = 21,145   y   Y₂ = 16,145  

Explicación paso a paso:

Sean X, Y los números considerados.

Si su producto es 36, se representa por:

X . Y = 36

Si la diferencia es 5, la expresión que los representa es:

X - Y = 5

Resulta un sistema de ecuaciones con dos incógnitas:

X . Y = 36    ( ecuación 1)

X - Y =  5    (ecuación 2)

Uso el sistema de sustitución para resolverlo. Para ello despejo X en la ecuación 2 y se obtiene:

X = Y + 5

Ahora reemplazo el valor de X en la primera ecuación:

X . Y = 36

(Y + 5) . Y = 36

Y² + 5Y = 36

Y² + 5Y - 36 = 0. Resulta una ecuación de 2do grado ( a= 1, b = 5, c = - 36)

y para resolverla uso la fórmula:

Y = - b ± √b² - 4.a.c       =  - 5 ± √ 5² - 4 . 1 . 5. (-36)

                  2.a                                       2. 1

Y =    -5 ± √ 25+ 720       =    - 5 ± √ 745    =    - 5 ± 27,29

                   2                                  2                        2

   Y₁   =  - 5  + 27,29    =  22,29   = 11,145         Y₁ = 11,145

                      2                     2

 Y₂   =  - 5  - 27,29    =  - 32,29   = - 16,145       Y₂ = 16,145

                      2                    2

Ahora debo buscar los valores para X₁ y Xreemplazando los valores obtenidos para las Y en la ecuación X = Y + 5.

Para Y₁ = 11,145 entonces X₁ = 11,145 + 5 = 16,145, por tanto:    X₁ = 16,145  

Para Y₂ = 16,145 entonces X₂ = 16,145 + 5 = 21,145, por lo que X₂ = 21,145


Chacacha: Disculpen, mis hijos. Más tarde voy a resolver de nuevo la ecuación de 2do grado porque en la cantidad subradical coloqué esta expresión 5² - 4 . 1 . 5. (-36) y realmente es 5² - 4 . 1 . (-36). Apenas regrese la haré de nuevo.
Chacacha: Sistema de ecuaciones: X.Y = 36 y X - Y = 5
Chacacha: Si X .Y = 36 entonces X = 36/Y. Y si X - Y = 5 entonces X = Y + 5. Usando el método de igualación resulta: 36/Y = Y + 5, es decir: (Y+5).Y = 36. Luego, Y cuadrado + 5Y = 36. De donde se obtiene la ecuación de 2do grado: Y cuadrado + 5Y - 36 = 0. Entonces: Y = - 5 ± √ 5²-4 1.(-36) /2

2. 1
Chacacha: Y = [- 5 ± √ 5²-4.1.(-36)] /2 = [- 5 ±√25+144] /2 = [- 5 ±√169] /2 = [- 5 ±13] /2 por lo que Y1= [- 5+ 13] /2 = 8/2 = 4 Y1 = 4 y Y2 = - 9. Como X = Y + 5, se tiene que X = 4 + 5 = 9. X = 9 Como X = 9 y Y = 4 se comprueba que: X.Y = 9.4 = 36
Además, X - Y = 5 entonces: 9 - 4 = 5.
Otras preguntas