Matemáticas, pregunta formulada por Dimonita23, hace 1 año

El PNB (Producto Nacional Bruto) de cierto país era en el 2008 de 150,000 millones de euros y de 220,000 millones de euros en el 2018 Si el PNB crece exponencialmente, Cual serà el PNB para 2032​

Respuestas a la pregunta

Contestado por linolugo2006
1

Para 2032 el PNB será de 376085 millones de euros.

Explicación:

Si  C(t)  es el PNB (Producto Nacional Bruto) en millones de euros en el tiempo  t  (en años) y  k  una constante que representa la tasa de interés en la unidad de tiempo, la fórmula de capitalización compuesta continua es:

\bold {C_{(t)}=C_{(0)}e^{kt}}

Vamos a sustituir los datos aportados y obtener el modelo de simulación del PNB:

Inicialmente  t = 0,  en 2008, el PNB es de C(0)  =  150000 millones de euros y luego de 10 años, en 2018, es de 220000 millones de euros, entonces

220000=150000e^{10k} \qquad \Rightarrow \qquad \frac{220000}{150000}=e^{10k} \qquad \Rightarrow \qquad \\ Ln(\frac{22}{15})=Lne^{10k} \qquad \Rightarrow \\ \bold{k=(\frac{1}{10})Ln(\frac{22}{15})}

Por lo tanto, la función que modela el PNB en el instante t es

\bold {C_{(t)}=150000e^{t(\frac{1}{10})Ln(\frac{22}{15})}}

Evaluamos el modelo de simulación cuando    t  =  24   (en 2032):

C_{(24)}=150000e^{(24)(\frac{1}{10})Ln(\frac{22}{15})}=376085

Para 2032 el PNB será de 376085 millones de euros.

Otras preguntas