Matemáticas, pregunta formulada por ashleytobar057, hace 5 meses

El número racional -3/5 es mayor menor o igual a -7/10 ¿por qué?​

Respuestas a la pregunta

Contestado por nicolas37vita
0

Respuesta:

¿Qué números pertenecen a los racionales?

Los números racionales son aquellos que se pueden representar como el cociente de dos enteros con denominador que es distinto de cero. Ejemplo: 2/4, 3/6, 17/3.

Explicación paso a paso:

números racionales son todos los números que pueden representarse como el cociente de dos números enteros o, más exactamente, un entero y un natural positivo;1​ es decir, una fracción común {\displaystyle a/b}a/b con numerador {\displaystyle a}a  y denominador {\displaystyle b}b  distinto de cero. El término «racional» alude a una fracción o parte de un todo. El conjunto de los números racionales se denota por Q (o bien {\displaystyle \mathbb {Q} }\mathbb{Q}, en negrita de pizarra) que deriva de «cociente» (Quotient en varios idiomas europeos). Este conjunto de números incluye a los números enteros ({\displaystyle \mathbb {Z} }\mathbb{Z}) y a los números fraccionarios y es un subconjunto de los números reales ({\displaystyle \mathbb {R} }\mathbb{R}).

La escritura decimal de un número racional es, o bien un número decimal finito, o bien semiperiódico. Esto es cierto no solo para números escritos en base 10 (sistema decimal); también lo es en base binaria, hexadecimal o cualquier otra base entera. Recíprocamente, todo número que admite una expansión finita o periódica (en cualquier base entera) es un número racional.

Un número real que no es racional se llama número irracional; la expresión decimal de los números irracionales, a diferencia de los racionales, es infinita aperiódica.2​

En sentido estricto, número racional es el conjunto de todas las fracciones equivalentes a una dada; de todas ellas, se toma como representante canónico de dicho número racional a la fracción irreducible. Las fracciones equivalentes entre sí –número racional– son una clase de equivalencia, resultado de la aplicación de una relación de equivalencia sobre {\displaystyle \mathbb {Z} }\mathbb{Z}.

corona plis :(

Otras preguntas