Matemáticas, pregunta formulada por thejuanma22p56if5, hace 1 año

El desarrollo de log √12k

Cuando log 2= 0,301 log 3= 0,477 y log k= 0,778

Calcular el valor de K

Respuestas a la pregunta

Contestado por dresman1991
2
log(2) = 0,301
log(3) = 0,477
log(k) = 0,778

a)
Nos preguntan por log(√(12k))

Desarrollamos el log aplicando sus propiedades

log(√(12k)) = log(12k)^(1/2) =
(1/2)(log(12k)) = (1/2)(log(4×3×k)) =
(1/2)(log(4)+log(3)+log(k)) =
(1/2)(log(2²)+log(3)+log(k)) =
(1/2)(2log(2)+log(3)+log(k))
(Reemplazamos los valores en cada log)

(1/2)[2(0,301)+0,477+0,778] =
(1/2)[1,857] = 0,9285

log(√(12k)) => 0,9285

b)
log(k) = 0,778
(Como el log es de base 10 será 10^(0,778) = k)

log(k) = 0,778
10^(0,778) = k
k = 5,9979 que aproximado nos queda

k = 6

Saludos Ariel


thejuanma22p56if5: Muchas gracias tengo mañana el examen de algebra haber si se puede ir a por el 10.
dresman1991: Así será :)
Otras preguntas