Matemáticas, pregunta formulada por velezjohan00, hace 1 mes

El 0.3 tiene un símbolo arriba
( \sqrt{ \frac{1}{6} } \sqrt{ \frac{1}{6} } ) ^{ - 2}  - ( \frac{ \sqrt{72} }{ \sqrt{2} }  -  \sqrt{ {0.3}^{4}  } )

Adjuntos:

Respuestas a la pregunta

Contestado por neteskai
0

Respuesta:

Explicación paso a paso:

i^{2}=-1\\\\\left(\sqrt{\frac{1}{6}}*\sqrt{-\frac{1}{6}}\right)^{-2}=\frac{1}{\left(\sqrt{\frac{1}{6}}*\sqrt{-\frac{1}{6}}\right)^{2}} \\\\\left(\sqrt{\frac{1}{6}}\sqrt{-\frac{1}{6}}\right)^{2}=\left(\sqrt{\frac{1}{6}}*\sqrt{-1}\sqrt{\frac{1}{6}}\right)^{2}=\\\\=\left(\sqrt{\frac{1}{6}}*\sqrt{\frac{1}{6}}i\right)^{2}=\left(\sqrt{\frac{1}{6}}\right)^{2}*\left(\sqrt{\frac{1}{6}}\right)^{2}*i^{2}=\\\\=\frac{1}{6}*\frac{1}{6}*(-1)=-\frac{1}{36}

\left(\sqrt{\frac{1}{6}}*\sqrt{\frac{-1}{6}}\right)^{-2}=

\frac{1}{\left(\sqrt{\frac{1}{6}}*\sqrt{-\frac{1}{6}}\right)^{2}}=\frac{1}{\frac{-1}{36}}=-36

\frac{\sqrt{72}}{\sqrt{2}}=\frac{\sqrt{(36)(2)}}{\sqrt{2}}=\\\\=\frac{\sqrt{36}\sqrt{2}}{\sqrt{2}}=\sqrt{36}=6\\\\(0.\hat{3})^{4}=\left(\frac{1}{3}\right)^{4}=\frac{1^{4}}{3^{4}}

\left(\sqrt{\frac{1}{6}}*\sqrt{-\frac{1}{6}}\right)^{-2}-\left(\frac{\sqrt{72}}{\sqrt{2}}-\sqrt{(0.\hat{3})^{4}}\right)=-36-\left(6-\sqrt{\frac{1^{4}}{3^{4}} }\right)=\\\\=-36-\left(6-\sqrt{\frac{1}{81}}\right)=-36-\left(6-\frac{1}{9}\right)=\\\\=-\frac{377}{9}

Otras preguntas