ejemplo de como escribir literalmente los numeros y su decodificacion
Respuestas a la pregunta
Cada dígito decimal tiene una representación binaria codificada con 4 bits:
Decimal: 0 1 2 3 4 5 6 7 8 9 BCD: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001Los números decimales, se codifican en BCD con los bits que representan sus dígitos.
Por ejemplo, la codificación en BCD del número decimal 59237 es:
Decimal: 5 9 2 3 7 BCD: 0101 1001 0010 0011 0111La representación anterior (en BCD) es diferente de la representación del mismo número decimal en binario puro:
1110011101100101 Fundamentos[editar]En BCD cada cifra que representa un dígito decimal (0, 1,...8 y 9) se representa con su equivalente binario en cuatro bits (nibble o cuarteto) (esto es así porque es el número de bits necesario para representar el nueve, el número más alto que se puede representar en BCD). En la siguiente tabla se muestran los códigos BCD más empleados:
DecimalNaturalAiken5 4 2 1Exceso 300000000000000011100010001000101002001000100010010130011001100110110401000100010001115010110111000100060110110010011001701111101101010108100011101011101191001111111001100Como se observa, con el BCD sólo se utilizan 10 de las 16 posibles combinaciones que se pueden formar con números de 4 bits, por lo que el sistema pierde capacidad de representación, aunque se facilita la compresión de los números. Esto es porque el BCD sólo se usa para representar cifras, no números en su totalidad. Esto quiere decir que para números de más de una cifra hacen falta dos números BCD.
Una forma sencilla de calcular números en BCD es sumando normalmente bit a bit, y si el conjunto de 4 bits sobrepasa el número 9, entonces se le suma un 6 (0110) en binario, para poder volver a empezar, como si hiciéramos un módulo al elemento sumante.Desde que los sistemas informáticos empezaron a almacenar los datos en conjuntos de ocho bits (octeto), hay dos maneras comunes de almacenar los datos BCD:
Omisión de los cuatro bits más significativos (como sucede en el EBCDIC)Almacenamiento de dos datos BCD; es el denominado BCD "empaquetado", en el que también se incluye en primer lugar el signo, por lo general con 1100 para el + y 1101 para el -.De este modo, el número 127 sería representado como (11110001, 11110010, 11110111) en el EBCDIC o (00010010, 01111100) en el BCD empaquetado.
El BCD sigue siendo ampliamente utilizado para almacenar datos, en aritmética binaria o en electrónica. Los números se pueden mostrar fácilmente en visualizadores de siete segmentos enviando cada cuarteto BCD a un visualizador. La BIOS de un ordenador personal almacena generalmente la fecha y la hora en formato BCD; probablemente por razones históricas se evitó la necesidad de su conversión en ASCII.
La ventaja del código BCD frente a la representación binaria clásica es que no hay límite para el tamaño de un número. Los números que se representan en formato binario están generalmente limitados por el número mayor que se pueda representar con 8, 16, 32 o 64 bits. Por el contrario, utilizando BCD, añadir un nuevo dígito sólo implica añadir una nueva secuencia de 4 bits.