ecuación explícita de la recta
Realice los siguientes ejercicios de ecuación explícita de la recta:
Encontrar la ecuación explicita de la recta que pasa por el punto (-3; 2) y cuya pendiente
es m= -2.
Hallar la ecuación de la recta que pasa por los puntos (4, -2) y (5; -4).
Obtenga la ecuación de la recta que satisfaga la condición dada en el punto (-5; -2) y
cuya pendiente es m= 1/5.
Halle la ecuación de la recta que pasa por los puntos (-1; 2) y (2; -1)
Respuestas a la pregunta
Respuesta:
La ecuación de la recta que pasa por el punto (-3, 2) y tiene pendiente -2 es y= -2x-4
Explicación paso a paso:
Formula de la ecuación punto-pendiente de la recta:
y = y₁ + m(x - x₁)
El punto ( -3 , 2 ) y tiene pendiente -2
Datos:
x₁ = -3
y₁ = 2
m = -2
Hallamos la ecuación:
y = y₁ + m(x - x₁)
y= 2 + -2(x - (-3))
y= 2 + -2x -6
y= -2x-6+2
y= -2x-4
Por lo tanto, la ecuación de la recta que pasa por el punto (-3, 2) y tiene pendiente -2 es y= -2x-4
--------------------------
Respuesta:
La ecuación de la recta que pasa por los puntos A(4,-2) y B(5,-4) es y = -2x+6
Explicación paso a paso:
Para poder darle solución al problema, Empezamos calculando la pendiente (m) de la recta:
m = (y₂ - y₁) / (x₂ - x₁)
Para hacerlo más sencillo aún, vamos a poner nuestros datos. Los que tenemos hasta ahora.
A( 4 , -2 ) y B( 5 ; -4 )
Datos:
x₁ = 4
y₁ = -2
x₂ = 5
y₂ = -4
Hallamos la pendiente de la recta entre dos puntos:
m = (y₂ - y₁) / (x₂ - x₁)
m = (-4 - (-2)) / (5 - (+4))
m = (-2) / (1)
m = -2
Elegimos uno de los puntos para hacer pasar la recta por ese punto, en este caso hemos elegido el punto x₁= 4 y y₁= -2
Sustituimos m, x₁ e y₁ en la fórmula de la ecuación punto-pendiente, que es y = y₁ + m(x - x₁)
quedando entonces:
y = y₁ + m(x - x₁)
y = -2-2(x -( 4))
y = -2-2x+8
y = -2x+8-2
y = -2x+6
Por lo tanto, la ecuación de la recta que pasa por los puntos A(4,-2) y B(5,-4) es y = -2x+6
--------------------
Respuesta:
La ecuación de la recta que pasa por el punto (-5, -2) y tiene pendiente 1/5 es y= 1/5x-1
Explicación paso a paso:
Formula de la ecuación punto-pendiente de la recta:
y = y₁ + m(x - x₁)
El punto ( -5 , -2 ) y tiene pendiente 1/5
Datos:
x₁ = -5
y₁ = -2
m = 1/5
Hallamos la ecuación:
y = y₁ + m(x - x₁)
y= -2 + 1/5(x - (-5))
y= -2 + 1/5x +5/5
y= 1/5x+5/5-2
y= 1/5x-5/5
y= 1/5x-1
Por lo tanto, la ecuación de la recta que pasa por el punto (-5, -2) y tiene pendiente y= 1/5x-1
-------------------------
Respuesta:
La ecuación de la recta que pasa por los puntos A(-1,2) y B(2,-1) es y = -x+1
Explicación paso a paso:
Para poder darle solución al problema, Empezamos calculando la pendiente (m) de la recta:
m = (y₂ - y₁) / (x₂ - x₁)
Para hacerlo más sencillo aún, vamos a poner nuestros datos. Los que tenemos hasta ahora.
A( -1 , 2 ) y B( 2 ; -1 )
Datos:
x₁ = -1
y₁ = 2
x₂ = 2
y₂ = -1
Hallamos la pendiente de la recta entre dos puntos:
m = (y₂ - y₁) / (x₂ - x₁)
m = (-1 - (+2)) / (2 - (-1))
m = (-3) / (3)
m = -1
Elegimos uno de los puntos para hacer pasar la recta por ese punto, en este caso hemos elegido el punto x₁= -1 y y₁= 2
Sustituimos m, x₁ e y₁ en la fórmula de la ecuación punto-pendiente, que es y = y₁ + m(x - x₁)
quedando entonces:
y = y₁ + m(x - x₁)
y = 2-1(x -( -1))
y = 2-x-1
y = -x-1+2
y = -x+1
Por lo tanto, la ecuación de la recta que pasa por los puntos A(-1,2) y B(2,-1) es y = -x+1