DOY CORONA ES AHORA recaudar Es una representación de números negativos
Respuestas a la pregunta
Respuesta:
es -1 -2 -3 -4 -5
Explicación paso a paso:
espero que te ayude mucho
Respuesta:
En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo «−». Sin embargo, en una computadora hay varias formas de representar el signo de un número. Este artículo trata cuatro métodos de extender el sistema binario para representar números con signo: signo y magnitud, complemento a uno, complemento a dos y exceso K, donde normalmente K equivale a bn-1 - 1.
Para la mayoría de usos, las computadoras modernas utilizan típicamente la representación en complemento a dos, aunque pueden usarse otras en algunas circunstancias.
En las secciones siguientes nos referiremos exclusivamente al caso de números signados en binario (y contrastaremos con el decimal con fines didácticos). Esto no significa que lo mostrado aquí se pueda llevar en forma análoga a otras bases (hexadecimal, u octal, por ejemplo). El valor absoluto de un número es la distancia que lo separa del cero en la recta numérica; es el propio número tras prescindir de su signo. El valor absoluto se escribe entre barras: | |. Valor absoluto de 3:|3| =3. El valor absoluto de -3: |-3| =3. Los números menores que cero son por supuesto los números negativos.
El número que tiene como valor absoluto 125 y es menor que cero es -125 porque el valor absoluto solo toma en cuenta la distancia, no la dirección, razón por la cual este solo puede ser positivo o cero. |+ Para n = 8 (8 bits) en Signo y Magnitud
Un primer enfoque al problema de representar un número signado de n-bits consiste en asignar:
un bit para representar el signo. Ese bit a menudo es el bit más significativo o MSB (de sus siglas en inglés) y, por convención: un 0 denota un número positivo, y un 1 denota un número negativo;
los (n-1)-bits restantes para representar el significando que es la magnitud del número en valor absoluto.
Y se conoce como Signo y Magnitud.
Un número negativo es cualquier número cuyo valor es menor que cero y, por tanto, que los demás números positivos, como 7, 49/22 o π. Se utilizan para representar pérdidas, deudas, disminuciones o decrecimientos, entre otras cosas. Los números negativos son una generalización útil de los números positivos, cuando una magnitud o cantidad puede variar incrementalmente por encima o por debajo de un punto de referencia, usualmente representado por el cero.
Se representan igual que los positivos, pero añadiendo un signo menos «−» detrás de ellos: −4, −2,5, −√8, etc. (estos números se leen: "menos cuatro", "menos dos coma cinco", etc.). A veces, se añade un signo más «+» a los números positivos para distinguirlos mejor: +3, +9/12, +4√22, etc. (más tres, más 9 doceavos, etc.).
Uno de los usos de los números negativos es representar pérdidas: si una persona en un año gana 20 000 pesos, pero gasta 25 000, al final del año ha perdido 25 000 − 20 000 = $ 5000; pero también puede decirse que sus ahorros han aumentado 20 000−25 000 = − $ 5000.
También se utilizan para representar temperaturas y otras magnitudes por debajo del cero. Cuando la temperatura es de 0 °C (cero grados Celsius) el agua se congela. Si el ambiente se calienta, la temperatura crece, pero si se enfría aún más, desciende por debajo de cero: por ejemplo, el mercurio, un metal líquido, se congela a 39 grados bajo cero, o sea a −39 °C (aproximadamente).
Este enfoque es directamente comparable a la forma habitual de mostrar el signo (colocando "+" o "-" al lado de la magnitud del número). Algunas
de las primeras computadoras binarias (la IBM 7090) utilizaron esta
representación, quizás por su relación obvia con la práctica habitual.
El formato Signo y Magnitud es además el habitual para la representación del significando en números en punto flotante.
Explicación paso a paso: