Dos triángulos equilateros iguales, cada uno con perímetro de 18, se traslapan de manera de sus lados quedan paralelos como en la figura, cual es el perímetro del hexágono formado dentro de la figura.
Respuestas a la pregunta
Respuesta:
ExpliDada la parábola y^2=8x, calcular su vértice, su foco y la recta directriz.
Solución
2 Dada la parábola y^2=-8x, calcular su vértice, su foco y la recta directriz.
Solución
3 Dada la parábola x^2=8y, calcular su vértice, su foco y la recta directriz.
Solución
4 Dada la parábola x^2=-8y, calcular su vértice, su foco y la recta directriz.
Solución
5 Dada la parábola (y-2)^2=8(x-3), calcular su vértice, su foco y la recta directriz.
Solución
6 Dada la parábola (x-3)^2=8(y-2), calcular su vértice, su foco y la recta directriz.
Solución
7 Determinar, en forma reducida, las ecuaciones de las siguientes parábolas, indicando el valor del parámetro, las coordenadas del foco y la ecuación de la directriz.
6y^2-12x=0
2y^2=-7x
15x^2=-42y
Solución
8 Calcular las coordenadas del vértice y de los focos, y las ecuaciones de la directrices de las parábolas:
y^2-6y-8x+17=0
x^2-2x-6y-5=0
y=x^2-6x+11
Determina las ecuaciones de las parábolas que tienen:
De directriz x = -3, de foco (3, 0).
De directriz y = 4, de vértice (0, 0).
De directriz y = -5, de foco (0, 5).
De directriz x = 2, de foco (-2, 0).
De foco (2, 0), de vértice (0, 0).
De foco (3,2), de vértice (5,2).
De foco (-2,5), de vértice (-2,2).
De foco (3,4), de vértice (1,4).
Solucióncación paso a paso: