Física, pregunta formulada por lizbethreales, hace 1 año

Dos cuerpos cargados eléctricamente con cargas q1 y q2 están separados una distancia r e interactúan con una fuerza F. Si la carga q1 se duplica y la carga q2 disminuye a la cuarta parte. ¿Qué ocurre con la fuerza de interacción entre las cargas en esta nueva situación?

Respuestas a la pregunta

Contestado por junior198619
3

VOY A AUSAR LA LEY DE COULOMB:

En el inicio del ejercicio la fuerza F tendría el valor de:

<var>F=k*\frac{q_1*q_2}{r^2}</var>

 

despues de que pase el efecto que plantea el ejercicio (es decir: q1 se duplica y q2 se reduce a la cuarta parte) la nueva fuerza F1 quedaría como:

<var>F1=k*\frac{(2*q_1)*(\frac{q_2}{4})}{r^2}\\ F1=k*\frac{(1*q_1)*(\frac{q_2}{2})}{r^2}\\ F1=k*\frac{\frac{q_1*q_2}{2}}{r^2}\\ F1=k*\frac{q_1*q_2}{2*r^2}\\ F1=\frac{1}{2}k*\frac{q_1*q_2}{r^2} \ \ sabemos\ que \ F=k*\frac{q_1*q_2}{r^2}\\ F1=\frac{1}{2}*F\\ F1=\frac{F}{2} </var>

 

 

 DE ESTA DEMOSTRACIÓN SE CONCLUYE QUE: la fuerza original se reduce a la mitad.

 

NO HAY DE QUE lizbethreales

Otras preguntas