Dos atletas corren en pista circulares que comparten el centro.¿A cuantos metros de distancia del otro, debe partir el atleta que corre por la pista de mayor diámetro para que su recorrido sea el mismo que el de su competidor?
Respuestas a la pregunta
El atleta que corre por la pista de mayor diámetro, debe partir a 2πm metros de distancia del corredor que corre por la pista de menor diámetro. Donde m es la diferencia en metros entre los dos radios de las circunferencias.
1) El corredor que va por la pista de menor diámetro correrá en total una distancia de L1 = 2πr donde r es el radio de la pista de menor diámetro
2) El corredor que va por la pista de mayor diámetro correrá en total una distancia de L2 = 2π(r+m) donde r es el radio de la pista de menor diámetro y m es la cantidad en metros que debe sumarse a r para obtener el radio de la pista de mayor diámetro.
3) Luego para que L2 recorra lo mismo que L1 le tengo que restar una distancia d, porque la longitud L2 es mayor que L1 y se quiere que las longitudes sean las mismas. Se debe cumplir que:
L2 - d = L1
2π(r+m) - d = 2πr sustituyo L1 y L2
2πr + 2πm - d = 2πr aplico propiedad distributiva en el primer miembro
2πm - d = 2πr -2πr paso restando 2πr al segundo miembro
2πm - d = 0 simplifico el segundo miembro
2πm = d paso la d sumando al segundo miembro queda despejada
Saludos!