Dónde se encuentra presente la estática en la vida del hombre
Respuestas a la pregunta
Respuesta:
Estática (mecánica)
Ir a la navegaciónIr a la búsqueda
La estática es la rama de la física que analiza los cuerpos en reposo: fuerza, par / momento y estudia el equilibrio de fuerzas en los sistemas físicos en equilibrio estático, es decir, en un estado en el que las posiciones relativas de los subsistemas no varían con el tiempo. La primera ley de Newton implica que la fuerza neta y el par neto (también conocido como momento de fuerza) de cada organismo en el sistema es igual a cero. De esta limitación pueden derivarse cantidades como la carga o la presión. La red de fuerzas de igual a cero se conoce como la primera condición de equilibrio, y el par neto igual a cero se conoce como la segunda condición de equilibrio. Un cuerpo esta en reposo cuando su velocidad es igual a cero y está en equilibrio cuando la aceleración es igual a cero.
El equilibrio puede ser de tres clases:
Estable: Un péndulo, plomada o campana.(el centro de gravedad está por debajo del punto de suspensión)
Inestable: Un bastón sobre su punta.(el centro de gravedad está por encima del punto de suspensión)
Indiferente o neutro: Una rueda en su eje.(el centro de gravedad y punto de suspensión son coincidentes)
Se llama momento de una fuerza (Mf) con respecto a un eje de rotación al producto resultante de multiplicar la intensidad de la fuerza por la distancia que existe entre la recta de acción de la fuerza y el eje de rotación. A esta distancia se le llama brazo de la fuerza.
Análisis del equilibrio
Artículo principal: Equilibrio mecánico
Esquema de fuerzas y momentos en una viga en equilibrio.
La estática proporciona, mediante el empleo de la mecánica del sólido rígido, solución a los problemas denominados isostáticos. En estos problemas, es suficiente plantear las condiciones básicas de equilibrio, que son:
El resultado de la suma de fuerzas es nulo.
El resultado de la suma de momentos respecto a un punto es nulo.
Estas dos condiciones, mediante el álgebra lineal, se convierten en un sistema de ecuaciones; la resolución de este sistema de ecuaciones es la solución de la condición de equilibrio.
Existen métodos de resolución de este tipo de problemas estáticos mediante gráficos, heredados de los tiempos en que la complejidad de la resolución de sistemas de ecuaciones se evitaba mediante la geometría, si bien actualmente se tiende al cálculo por ordenador.
Para la resolución de problemas hiperestáticos (aquellos en los que el equilibrio se puede alcanzar con distintas combinaciones de esfuerzos) es necesario considerar ecuaciones de compatibilidad. Dichas ecuaciones adicionales de compatibilidad se obtienen mediante la introducción de deformaciones y tensiones internas asociadas a las deformaciones mediante los métodos de la mecánica de sólidos deformables, que es una ampliación de la mecánica del sólido rígido que, además, da cuenta de la deformabilidad de los sólidos y sus efectos internos.
Existen varios métodos clásicos basados en la mecánica de sólidos deformables, como los teoremas de Castigliano o las fórmulas de Navier-Bresse.
Suma de fuerzas
Cuando sobre un cuerpo o sólido rígido actúan varias fuerzas que se aplican en el mismo punto, el cálculo de la fuerza resultante resulta trivial: basta sumarlas vectorialmente y aplicar el vector resultante en el punto común de aplicación.
El estudio de la Estática suele ser el primero dentro del área de la ingeniería mecánica, debido a que los procedimientos que se realizan suelen usarse a lo largo de los demás cursos de ingeniería mecánica.
Sólidos y análisis estructural
La estática se utiliza en el análisis de las estructuras, por ejemplo, en arquitectura e ingeniería estructural y la ingeniería civil. La resistencia de los materiales es un campo relacionado de la mecánica que depende en gran medida de la aplicación del equilibrio estático. Un concepto clave es el centro de gravedad de un cuerpo en reposo, que constituye un punto imaginario en el que reside toda la masa de un cuerpo. La posición del punto relativo a los fundamentos sobre los cuales se encuentra un cuerpo determina su estabilidad a los pequeños movimientos.
Explicación: