divisiones
2/4 entre 5/8
Respuestas a la pregunta
Respuesta:División de fracciones
Ni los maestros ni los estudiantes suelen entender bien este tema. Pero queremos que ellos aprendan, no sólo la regla, sino también el significado de la división de fracciones.
Estas ideas te pueden ayudar a explicar y entender la división de fracciones (quebrados):
La regla de "invertir y multiplicar" aplica a la división en general - no solamente a la división de fracciones. Es un principio general. Por ejemplo:
20 ÷ 4
Puedo invertir y multiplicar:
20 × 1/4 = 5.
La división de números naturales se puede pensar como repartir en partes iguales. Cuando divides algo por 7, estás repartiéndolo en 7 partes, y eso corresponderia a tomar la séptima parte (1/7) de lo que estas dividiendo - o multiplicar por 1/7:
42 ÷ 7 = 42 × 1/7 = 6.
Puedes SIEMPRE cambiar una división por una multiplicación usando este principio: 18 ÷ 2.51 = 18 × 1/2.51
Piensa en la división de fracciones en esta manera: ¿cuántas veces cabe el divisor en el dividendo? Esto se puede usar para juzgar si la respuesta es razonable.
Por ejemplo, considera 1 3/5 ÷ 2/3. Claro que 2/3 cabe en 1 3/5 más de dos veces.
Vea a continuación como un estudiante efectuó esta cuenta:
1 3/5 ÷ 2/3 = 8/5 × 2/3 = 16/15 = 1 1/15 - un poco más de 1.
Pero anteriormente determinamos que la respuesta era mayor de dos. ¿CUÁL FUE EL ERROR QUE COMETIÓ EL ESTUDIANTE?
Otro ejemplo: 3/8 ÷ 11/12. Ahora, el divisor es mayor que el dividendo. Entonces eso significa que 11/12 no cabe ni una vez en 3/8. O podemos ver facilmente que 11/12 sólo "cabe" en 3/8 más o menos una media vez (11/12 es aproximadamente la mitad de 3/8), entonces la respuesta debería ser cerca de una mitad.
Y efectivamente, usando la regla, 3/8 ÷ 11/12 = 3/8 × 12/11 = 3/2 × 3/11 = 9/22.
Un método alternativo para dividir fracciones es primero convertir las dos fracciones en fracciones equivalentes, y luego simplemente dividir un numerador entre el otro.
5/6 ÷ 1/8 = (pasar ambas a 24.a partes)
20/24 ÷ 3/24 (ahora nos olvidamos del denominador 24...)
= 20 ÷ 3 = 6 2/3.
La respuesta tiene sentido porque 1/8 puede "caber" más de seis veces en 5/6.
Este método me gusta porque da significado a la regla: ¿cuántas veces cabe 3/24 en 20/24? Es lo mismo que preguntar cuántas veces cabe 3 en 20.
Otro ejemplo:
2 2/11 ÷ 2/5 = 24/11 ÷ 2/5
= 120/55 ÷ 22/55 (pasar ambas a 55.a partes)
= 120 ÷ 22 = 5 10/22 = 5 5/11.
Volveremos a la regla de "invertir y multiplicar". Primero consideramos el número 1 (la unidad) como el dividendo. En otras palabras, pensemos en ejemplos del tipo 1 ÷ x.
¿Cuántas veces cabe 1/2 en una unidad? Dos veces. 1 ÷ 1/2 = 2.
¿Cuántas veces cabe 3/4 en una unidad? Cabe una vez, y sobra 1/4.
Luego preguntamos ¿cuántas veces cabe 3/4 en el 1/4 que sobra? Son 1/3 veces, porque podemos meter 1/3 de 3/4 en 1/4. Entonces, 3/4 cabe en la unidad un total de 4/3 veces. 1 ÷ 3/4 = 4/3.
¿Cuántas veces cabe 1 2/5 en una unidad? Ni siquiera una vez. Si piensas en 1 como 5/5 y en 1 2/5 como 7/5, la pregunta sería: ¿Cuántas veces cabe 7/5 en 5/5?
Pues 5 de los 7 quintos caben en cinco quintos... entonces 1 2/5 cabe en la unidad exactamente 5/7 veces. A lo mejor necesitas dibujar esto en papel o en tu mente. Dibuja la unidad como 5/5 (cinco quintos), luego dibuja 7/5 al lado. Exactamente cinco de los 7 partes de 7/5 caben en la unidad.
1 ÷ 7/5 = 5/7.
Hola
2/4÷5/8=16/20 simplificada =4/5
Debes realizar productos cruzados es decir 2×8 y 4×5.