división de franciones algebraicas 20 ejercicios
Respuestas a la pregunta
Respuesta:
Realizar la siguiente división algebraica
{\displaystyle\frac{x^{2}+2x}{x^{2}-5x+6}:\frac{x^2+4x+4}{x^{2}-4}}
Multiplicamos el primer numerador por el segundo denominador y el primer denominador por el segundo numerador
{\displaystyle\frac{x^{2}+2x}{x^{2}-5x+6}:\frac{x^2+4x+4}{x^{2}-4}=\frac{(x^{2}+2x)(x^{2}-4)}{(x^{2}-5x+6)(x^2+4x+4)}}
En el numerador sacamos factor común {x} en el primer binomio y la diferencia de cuadrados la trasformamos en un diferencia de cuadrados. En el denominador el trinomio de segundo grado lo descomponemos resolviendo la ecuación de segundo grado que resulta de igualarlo a cero y el trinomio cuadrado perfecto lo transformamos en un binomio al cuadrado
{\begin{array}{rcl} \displaystyle\frac{x^{2}+2x}{x^{2}-5x+6}:\frac{x^2+4x+4}{x^{2}-4}&=&\displaystyle\frac{(x^{2}+2x)(x^{2}-4)}{(x^{2}-5x+6)(x^2+4x+4)}\\ && \\ &=& \displaystyle\frac{[x(x+2)][(x-2)(x+2)]}{[(x-2)(x-3)][(x+2)^{2}]} \end{array}}
Simplificando nos queda:
{\begin{array}{rcl} \displaystyle\frac{x^{2}+2x}{x^{2}-5x+6}:\frac{x^2+4x+4}{x^{2}-4}&=&\displaystyle\frac{(x^{2}+2x)(x^{2}-4)}{(x^{2}-5x+6)(x^2+4x+4)}\\ && \\ &=& \displaystyle\frac{[x(x+2)][(x-2)(x+2)]}{[(x-2)(x-3)][(x+2)^{2}]} \\ && \\ &=& \displaystyle\frac{x}{x-3} \end{array}}
Explicación paso a paso:
no sé si te sirva