Matemáticas, pregunta formulada por chepamateo27, hace 2 meses

Disque sacar el limte del infinito​

Adjuntos:

Respuestas a la pregunta

Contestado por murdock14
2

\pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{lim \:  \frac{ {9x }^{3} +  {2x}^{2}  + 1 }{ {3x}^{5} - 5 } }}{\hspace{0pt}\above 2.2pt}} \\  \\ \pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{ x→ \infty }}{\hspace{0pt}\above 2.2pt}}

\pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{lim (\frac{ {x}^{3}(9 -  \frac{2}{x}  +  \frac{1}{ {x}^{3} })  }{ {x}^{3}( 3 - \frac{5}{ {x}^{3} } ) }) }}{\hspace{0pt}\above 2.2pt}} \\  \\ \pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{x → \infty }}{\hspace{0pt}\above 2.2pt}}

\pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{lim (\frac{9 -  \frac{2}{x} +  \frac{1}{ {x}^{3} }  }{3 -  \frac{5}{ {x}^{3} } }) }}{\hspace{0pt}\above 2.2pt}} \\  \\ \pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{x → \infty }}{\hspace{0pt}\above 2.2pt}}

\pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{ \frac{9 - 2 \times 0 + 0}{3 - 5 \times 0} }}{\hspace{0pt}\above 2.2pt}} \\  \\  \pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{ = 3}}{\hspace{0pt}\above 2.2pt}}

________________________________

\pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{lim (\frac{ {x}^{2} + x - 1 }{ {2x}^{2} + 5 } )}}{\hspace{0pt}\above 2.2pt}} \\  \\ \pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{x → \infty }}{\hspace{0pt}\above 2.2pt}}

\pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{lim (\frac{ {x}^{2} (1 +  \frac{1}{x}  -  \frac{1}{ {x}^{2} } ) }{ {x}^{2}(2 +  \frac{5}{ {x}^{2} } ) }) }}{\hspace{0pt}\above 2.2pt}} \\  \\ \pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{x → \infty }}{\hspace{0pt}\above 2.2pt}}

\pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{lim (\frac{1 +  \frac{1}{x} -  \frac{1}{ {x}^{2} }  }{2 +  \frac{5}{ {x}^{2} } }) }}{\hspace{0pt}\above 2.2pt}} \\  \\ \pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{x → \infty }}{\hspace{0pt}\above 2.2pt}}

\pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{ \frac{1 + 0 - 0}{2  + 5 \times 0} }}{\hspace{0pt}\above 2.2pt}} \\  \\ \pink{{\hspace{0 pt}\above 2.2pt}\boldsymbol{\mathsf{ =  \frac{1}{2} }}{\hspace{0pt}\above 2.2pt}}

_____________________________

Otras preguntas