Matemáticas, pregunta formulada por joshua227842, hace 11 meses

diganme 2 problemas de proporcionalidad directa y 2 de proporcionalidad inversa

Respuestas a la pregunta

Contestado por dencyalejandralozano
14

Respuesta:

Al llegar al hotel nos han dado un mapa con los lugares de interés de la ciudad, y nos dijeron que 5 centímetros del mapa representaban 600 metros de la realidad. Hoy queremos ir a un parque que se encuentra a 8 centímetros del hotel en el mapa. ¿A qué distancia del hotel se encuentra este parque?

Para resolver este problema, debemos pensar en primer lugar si cumple una proporcionalidad directa o inversa. Para ello, pensamos…

Si en lugar de 5 centímetros hablásemos del doble de centímetros en el mapa (10 centímetros), ¿en la realidad serían más metros o menos metros?

Serían más metros: justo el doble de metros en la realidad.

Si al duplicar una magnitud (centímetros) también se duplica la otra (metros) estamos hablando de una proporcionalidad directa.

Por lo tanto, vamos a resolver el problema:

Como 5 centímetros representan 600 metros, 1 centímetro representará…

600 : 5 = 120 metros

Como 1 centímetro representa 120 metros, 8 centímetros representarán…

120 x 8 = 960 metros

Solución: El parque se encuentra a 960 metros del hotel.

Segundo problema de proporcionalidad:

Problemas de proporcionalidad

Ayer 2 camiones transportaron una mercancía desde el puerto hasta el almacén. Hoy 3 camiones, iguales a los de ayer, tendrán que hacer 6 viajes para transportar la misma cantidad de mercancía del almacén al centro comercial. ¿Cuántos viajes tuvieron que hacer ayer los camiones?

Nos preguntamos si cumple una proporcionalidad directa o inversa. Para ello, pensamos…

Si en lugar de 3 camiones hablásemos del doble de camiones (6 camiones), ¿tendrían que hacer más o menos viajes?

Cuantos más camiones carguen mercancía, en menos viajes se cargará toda: necesitarían justo la mitad de viajes.

Si al duplicar una magnitud (camiones) se divide entre dos la otra (viajes necesarios) estamos hablando de una proporcionalidad inversa.

Por lo tanto, vamos a resolver el problema:

Como 3 camiones necesitan hacer 6 viajes, 1 solo camión necesitaría hacer…

3 x 6 = 18 viajes

Como 1 solo camión necesitaría hacer 18 viajes, los 2 camiones tuvieron que hacer…

18 : 2 = 9 viajes

Solución: Ayer los 2 camiones hicieron 9 viajes.

Contestado por alfredgrande2
4

Respuesta:

Sonia ha cobrado por repartir propaganda durante cinco días 126 euros ¿Cuántos días deberá trabajar para cobrar 340,2 euros?

Explicación paso a paso:26 = 5 días

340,2 = X

Se multiplica 340,2·5 = 1701

Luego se divide el resultado en 126.

1701÷126 = 13,5

Entonces:

126 = 5 días

340,2 = 13,5 días

Otras preguntas