Matemáticas, pregunta formulada por wachog15, hace 1 año

detrminar el angulo que forman la recta r y el plano L
r= x=2-k y=3+2k z=0+2k
L: 2x-y-3z+1

Respuestas a la pregunta

Contestado por Usuario anónimo
5

El ángulo entre el plano L y la recta r es 62º 58'

Para poder determinar el ángulo entre la recta y un plano, simplemente debemos restar 90 grados al ángulo entre el vector director de la recta y el vector normal del plano

El vector director a la recta

r: x = 2 - k

  y = 3 + 2k

  z = 0 + 2k

Es el vector n = (-1, 2, 2)

Además el vector normal al plano L: 2x-y-3z+1 = 0

Es m = (2, -1, -3),

El ángulo α entre estos se obtiene mediante la siguiente fórmula

cos(α) = (n * m) / ( |n| |m| )

Donde n*m es el producto punto de los vectores n y m , así como | . | es la magnitud del vector, entonces tenemos

n * m = (-1, 2, 2) * (2, -1, -3) = (-1)(2) + (2)(-1) + (2)(-3) = -2 - 2 - 6 = -10

|n| = √[ (-1)² + (2)² + (2)² ] = √( 1 + 4 + 4) = √9 = 3

|m| = √[ (2)² + (-1)² + (-3)² ] = √( 4 + 1 + 9 ) = √14

Y por lo tanto

cos(α) = (n * m) / ( |n| |m| ) = (-10)/(3√14) = -(5√14/21)

α = arcos(-5√14/21) = 152º  58'

Por lo que el ángulo entre el plano L y la recta r es

| α - 90 |= | 152º 58' - 90º |= 62 º 58'

Otras preguntas