determinar las abscisas al origen
Respuestas a la pregunta
Contestado por
0
Hola
Es un ecuación cuadrática, por lo tanto no tiene "abscisas", sino sólo una.
buscamos la forma (y - k) = k(x -h)^2
Formamos la ecuación cuadrática:
y = 2x^2 - 5(2/2)(raiz2)/(raiz2)X - 3
y = [2x^2 - 2(raiz2)(5/2raiz2) + (5/2raiz2)^2 ]- (5/2raiz2)^2 - 3
y = (Xraiz2 - 5/2raiz2)^2 - (49/8)
[y - (-49/8)] = 2(X - 5/4)^2
(h,k) = (5/4 , -49/8)
O si sabes derivar, esto es sencillo
y´= 4x - 5
igualando a cero
y´= 4x - 5= 0 => x= 5/4
Reemplazando en y
y = -49/8
Es un ecuación cuadrática, por lo tanto no tiene "abscisas", sino sólo una.
buscamos la forma (y - k) = k(x -h)^2
Formamos la ecuación cuadrática:
y = 2x^2 - 5(2/2)(raiz2)/(raiz2)X - 3
y = [2x^2 - 2(raiz2)(5/2raiz2) + (5/2raiz2)^2 ]- (5/2raiz2)^2 - 3
y = (Xraiz2 - 5/2raiz2)^2 - (49/8)
[y - (-49/8)] = 2(X - 5/4)^2
(h,k) = (5/4 , -49/8)
O si sabes derivar, esto es sencillo
y´= 4x - 5
igualando a cero
y´= 4x - 5= 0 => x= 5/4
Reemplazando en y
y = -49/8
Otras preguntas
Matemáticas,
hace 7 meses
Inglés,
hace 7 meses
Física,
hace 7 meses
Matemáticas,
hace 1 año
Matemáticas,
hace 1 año