Matemáticas, pregunta formulada por Shadiwis, hace 4 meses

Determinar la ecuación de la recta que pasa por los puntos: A(-2,-1) y B(2,5)​

Respuestas a la pregunta

Contestado por wernser412
1

Respuesta:            

La ecuación de la recta que pasa por los puntos A(-2,-1) y B(2,5) ​ es y = 3x/2+2            

           

Explicación paso a paso:          

Para poder darle solución al problema,  Empezamos calculando la pendiente (m) de la recta:              

m  = (y₂ - y₁)/(x₂ - x₁)            

           

Para hacerlo más sencillo aún, vamos a poner nuestros datos. Los que tenemos hasta ahora.            

A ( -2 , -1 ) y  B ( 2 , 5 )

           

Datos:            

x₁ =  -2          

y₁ = -1          

x₂ = 2          

y₂ =  5          

           

Hallamos la pendiente de la recta entre dos puntos:            

m  = (y₂ - y₁)/(x₂ - x₁)            

m = (5 - (-1))/(2 - (-2))            

m = (6)/(4)            

m = 3/2            

           

Elegimos uno de los puntos para hacer pasar la recta por ese punto, en este caso hemos elegido el punto  x₁= -2 y y₁= -1            

           

Sustituimos m, x₁ e y₁ en la fórmula de la ecuación punto-pendiente, que es y = y₁ + m(x - x₁)            

           

quedando entonces:            

           

y = y₁ + m(x - x₁)            

y = -1+3/2(x -( -2))            

y = -1+3/2(x +2)            

y = -1+3x/2+6/2            

y = 3x/2+6/2-1            

y = 3x/2+2            

           

Por lo tanto, la ecuación de la recta que pasa por los puntos A(-2,-1) y B(2,5) ​ es y = 3x/2+2          

Otras preguntas