Determinar el valor de la función para el punto señalado.
Respuestas a la pregunta
Se determina el valor de cada función evaluando en los puntos dados.
Nos piden resolver el ejercicio número 1: evaluaremos la funciín en los puntos que nos indican:
- f(x) = - 2x + 1:
f(-5) = -2*(-5) + 1 = 11
f(-2/3) = -2*(-2/3) + 1 = 4/3 + 1 = 7/3
f(a - b) = -2*(a - b) + 1 = - 2a + 2b + 1
f(0.4) = -2*(0.4) + 1 = -0.8 + 1 = 0.2
f(a - b) = -2*(a - b) + 1 = - 2a + 2b + 1
f(√2) = -2*√2 + 1
- f(x) = (2x -3)/(1 + 4x)
f(-5) = (2*(-5) - 3)/(1 + 4*(-5)) = -13/-19 = 13/19
f(-2/3) = (2*(-2/3) - 3)/(1 + 4*(-2/3)) = (-4/3 -3)/(1 - 8/3) =(-13/3)/(-5/3) = 13/5
f(a - b) =(2*(a - b) - 3)/(1 + 4*(a -b)) = (2a - 2b - 3)/(1 + 4a - 4b)
f(0.4) = (2*(0.4) - 3)/(1 + 4*(0.4)) = -2.2/2.6
f(a - b) =(2*(a - b) - 3)/(1 + 4*(a -b)) = (2a - 2b - 3)/(1 + 4a - 4b)
f(√2) = (2*(√2) - 3)/(1 + 4*(√2)) = (2√2 -3)/(1 + 4√2)
- f(x) = x²
f(-5) = (-5)² = 25
f(-2/3) = (-2/3)² = 4/3
f(a - b) = (a - b)² = a² - 2ab + b²
f(0.4) = (0.4)² = 0.16
f(a - b) = (a - b)² = a² - 2ab + b²
f(√2) = (√2)² = 2
- f(x) = 4
f(-5) = 4
f(-2/3) = 4
f(a - b) = 4
f(0.4) = 4
f(a - b) = 4
f(√2) = 4