Determinar el radio vector de los siguientes puntos : A(2,-3)
Respuestas a la pregunta
Radio Vector
Para calcular el radio vector en geometría analítica, consiste en ubicar el punto en un sistema de coordenada y hallar la distancia de este punto.
El punto A(2,-3) se encuentra en el cuarto cuadrante
En el eje x (Abscisas) son dos unidades positivas
En el eje y (ordenadas) son tres unidades negativas
Su radio vector seria:
R=\sqrt{x^2+y^2}
R=\sqrt{(2)^2+(-3)^2}=\sqrt{4+9}=\sqrt{13}
El radio vector del punto A(2,-3) es \sqrt{13}
El radio vector del punto a(2, -3) es
V = √13
¿Cómo se calcula el radio vector de un punto?
El radio vector de un punto se calcula mediante la ecuacion de teorema de pitadora ( como ves en la imagen adjunta), ya que es la magnitud del vector.
Y es por que el punto al prolongar la recta de su desplazamiento (desde origen) forman dos coordenadas y estas coordenadas la figura "triangulo rectángulo"
La ecuacion tal cual es P(x ,y)
V = √x² + y² aquí vamos a sustituir los valores de nuestro punto
V = √(2)² + (-3)²
V = √4 + 9
V = √13
Aprende mas sobre radio vector en:
https://brainly.lat/tarea/32403073