Matemáticas, pregunta formulada por deleonfrida1, hace 5 meses

determinar el area de la base de un cono del cual conocemos su angulo generador y la longitud de la generatriz angulo 70° generatriz 3cm

Respuestas a la pregunta

Contestado por cerongarcia123
1

Respuesta:

Por definición:

Area de un cono = Area de base del cono + Area de superficie lateral del cono

Area de la base del cono = π*r^2

Area de superficie lateral del cono = π*r*g

Donde:

g: generatriz del cono

r: radio de la base

Luego, si el area lateral de un cono de revolucion es el doble del area de la base, entonces:

π*r*g = 2*π*r^2

g = (2*π*r^2)/π*r*

g = 2r

Por favor revisa el archivo adjunto "generatriz", luego considerando el angulo que forman la generatriz de base para un cono, podemos decir que existe un triángulo rectángulo formado por la altura del cono, el radio de la base y la generatriz, en donde:

Hipotenusa = generatríz

cateto adyacente = radio de la base

Cateto opuesto = altura del cono

β=?

Por definición, una de las razones trigonométricas de un triángulo rectángulo:

Cos β = cateto adyacente/hipotenusa

En nuestro caso:

Cos β = r/(2r)

Cos β = 1/2  

Arco cos (0,5) = β

β =   60°

Explicación paso a paso:

Contestado por brandongomezpin0302
0

Respuesta:

hola soy brandon:v bueno me das Corona porfa porque es 12


gallagherjoana: cómo sabes que es 12
gallagherjoana: por qué lo lo explicas
Otras preguntas