Desde los puntos A y B de una misma orilla de un río y separados entre si 12 m., se observan el pie P y la copa C de un pino, situado en la orilla opuesta. Calcular la altura del pino, sabiendo que los ángulos miden PAB=42°, PBA=37° y PAC=50°
Respuestas a la pregunta
Contestado por
86
Primero que todo asumamos que el árbol es completamente recto.
Ahora bien, por propiedades de los triángulos, sabemos que la suma de los tres ángulos internos es igual a 180 º, de allí podemos deducir que el ángulo APB será igual a.
∠APB = 180 º - 42 º - 37 º = 101 º
Para determinar la distancia que hay entre los puntos A y P aplicamos ley del seno
AP = (12 / sin(101 º)) * sin(37 º)
AP = 7.35 metros
Ahora bien, como asumimos que el árbol era recto, entonces el ángulo APC es de 90 º, por lo que el ángulo PCA sería igual a
∠PCA = 180 º - 90 º - 50 º = 40º
Si volvemos a aplicar la ley del seno para determinar la altura del árbol, tenemos
PC = (7.35 / sin(40 º)) * sin(50 º)
PC = 8.76 metros.
Entonces la altura del árbol es de 8.76 metros.
Ahora bien, por propiedades de los triángulos, sabemos que la suma de los tres ángulos internos es igual a 180 º, de allí podemos deducir que el ángulo APB será igual a.
∠APB = 180 º - 42 º - 37 º = 101 º
Para determinar la distancia que hay entre los puntos A y P aplicamos ley del seno
AP = (12 / sin(101 º)) * sin(37 º)
AP = 7.35 metros
Ahora bien, como asumimos que el árbol era recto, entonces el ángulo APC es de 90 º, por lo que el ángulo PCA sería igual a
∠PCA = 180 º - 90 º - 50 º = 40º
Si volvemos a aplicar la ley del seno para determinar la altura del árbol, tenemos
PC = (7.35 / sin(40 º)) * sin(50 º)
PC = 8.76 metros.
Entonces la altura del árbol es de 8.76 metros.
Otras preguntas
Historia,
hace 7 meses
Arte,
hace 7 meses
Geografía,
hace 1 año
Matemáticas,
hace 1 año
Biología,
hace 1 año