DESDE EL TECHO DE UN EDIFICIO LO SUFICIENTEMENTE ALTO, SE LANZA UN PIEDRA VERTICALMENTE HACIA ARRIBA CON UNA VELOCIDAD DE 30M/SEG, DESDE EL MISMO PUNTO SE DEJA CAER OTRA PIEDRA 4 SEGUNDOS DESPUÉS. CALCULAR: 1. CUANTO TIEMPO DESPUÉS DE HABERSE LANZADO LA PRIMERA PIEDRA SE ENCUENTRAN LAS PIEDRAS 2. EN QUE PUNTO SE ENCUENTRAN 3. QUE VELOCIDAD LLEVA CADA PIEDRA AL MOMENTO QUE SE ENCUENTRAN
Respuestas a la pregunta
Contestado por
0
Veamos. Sea H la altura del edificio.
La posición de la primera es Y1 = H + 30 m/s t - 1/2 . 9,80 m/s² t²
La posición de la segunda es Y2 = H - 1/2 . 9,80 m/s² (t - 4 s)²
Se encuentran cuando sus posiciones son iguales (omito unidades)
H + 30 t - 4,9 t² = H - 4,9 (t - 4)²; H se cancela. Quitamos paréntesis:
30 t - 4,9 t² = - 4,9 t² + 39,2 t - 78,4; se cancela 4,9 t²
Resolviendo para t, resulta t = 8,52 segundos
La posición del encuentro es:
Y1 = H + 30 . 8,52 - 4,9 . 8,52² = H - 100 m
Es decir 100 m por debajo de la altura del edificio, que deberá ser mayor
Verificamos: Y2 = H - 4,9 (8,52 - 4)² = H - 100 m
Las velocidades:
V1 = 30 - 9,80 . 8,52 = - 53,5 m/s (bajando)
V2 = - 9,80 (8,52 - 4) = - 44,3 m/s (bajando)
Saludos Herminio
La posición de la primera es Y1 = H + 30 m/s t - 1/2 . 9,80 m/s² t²
La posición de la segunda es Y2 = H - 1/2 . 9,80 m/s² (t - 4 s)²
Se encuentran cuando sus posiciones son iguales (omito unidades)
H + 30 t - 4,9 t² = H - 4,9 (t - 4)²; H se cancela. Quitamos paréntesis:
30 t - 4,9 t² = - 4,9 t² + 39,2 t - 78,4; se cancela 4,9 t²
Resolviendo para t, resulta t = 8,52 segundos
La posición del encuentro es:
Y1 = H + 30 . 8,52 - 4,9 . 8,52² = H - 100 m
Es decir 100 m por debajo de la altura del edificio, que deberá ser mayor
Verificamos: Y2 = H - 4,9 (8,52 - 4)² = H - 100 m
Las velocidades:
V1 = 30 - 9,80 . 8,52 = - 53,5 m/s (bajando)
V2 = - 9,80 (8,52 - 4) = - 44,3 m/s (bajando)
Saludos Herminio
rakliw08:
Exelente Herminio... verifique cada paso y cada resultado. muchas gracias...
Otras preguntas
Matemáticas,
hace 7 meses
Ciencias Sociales,
hace 7 meses
Matemáticas,
hace 1 año
Matemáticas,
hace 1 año