Matemáticas, pregunta formulada por lauramirez344, hace 1 año

Descomponer en factores primos 897


queenUwU85: 3^1 x 13^1 x 23^1 :u se me borro mi respuesta :v

Respuestas a la pregunta

Contestado por johanesteban015
15

Respuesta:

897 no es número primo, es un número compuesto.

897 = 3 × 13 × 23...

Explicación paso a paso:

Vamos a aprender por un ejemplo, tomar el número 220 y construir su descomposición en factores primos.

0) Todos los números primos enumeran, de 2 hasta 100: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. Los números primos son utilizados como elementos básicos en la construcción de los factores primos de los números compuestos.

1) Comience dividiendo 220 por el primer número primo, 2:

220 ÷ 2 = 110; el resto es cero => 220 es divisible por 2 => Acabamos de calcular un factor primo de nuestro número: 2. Por lo tanto, 220 = 2 × 110.

2) Divida el resultado de la operación anterior, 110, por 2, de nuevo:

110 ÷ 2 = 55; el resto es cero => 110 es divisible por 2 => Hemos calculado otro factor primo de nuestro número: 2. Por lo tanto, 220 = 2 × 2 × 55.

3) Divida el resultado de la operación anterior, 55, por 2, de nuevo:

55 ÷ 2 = 27 + 1; el resto es 1 => 55 no es divisible por 2.

4) Divida 55 por el siguiente número primo, 3:

55 ÷ 3 = 18 + 1; el resto es 1 => 55 no es divisible por 3.

5) Divida 55 por el siguiente número primo, 5:

55 ÷ 5 = 11; el resto es cero => 55 es divisible por 5 => Hemos calculado otro factor primo de nuestro número: 5. Por lo tanto, 220 = 2 × 2 × 5 × 11.

6) Tenga en cuenta que 11 es también un número primo, por lo que tenemos todos los factores primos de 220.

7) Conclusión, 220 descomposición en factores primos: 220 = 2 × 2 × 5 × 11.

Este producto de factores primos puede escribirse en una forma condensada, por el uso de exponentes: 220 = 22 × 5 × 11.

Otras preguntas