Matemáticas, pregunta formulada por ge88878lupe, hace 5 meses

descompón en factores los siguientes trinomios

a²+2a-24


y²-8y-20


b²+26b+48²


z²+8z-48


n²+10n+21

Me ayudan es para mañana y no lo entiendo muy bien

Respuestas a la pregunta

Contestado por sortega93
1

Un trinomio ordenado con relación a una letra es cuadrado perfecto cuando el primero y tercer términos tienen raíz cuadrada exacta y positiva, y el segundo término es el doble del producto de sus raíces cuadradas.

Ejemplo: a²-4ab+4b² es cuadrado perfecto porque:

Raíz cuadrada de a² = a

Raíz cuadrada de 4b² = 2b

y el doble producto de estas raíces es 2(a)(2b) = 4ab

Regla para factorar un trinomio cuadrado perfecto:

Se extrae la raíz cuadrada del primero y tercer términos del trinomio y se separan estas raíces por el signo del segundo término del trinomio.

El binomio que se forma, que son las raíces cuadradas del trinomio, se multiplica por sí mismo o sea se eleva al cuadrado.

Ejemplo: a²-4ab+4b² = (a-2b)(a-2b) = (a-2b)²

Raíz cuadrada de a² = a ; raíz cuadrada de 4b² = 2b

–> se forma el binomio (a -2b) y este se multiplica por sí mismo (a-2b)(a-2b) o sea se eleva al cuadrado, que sería (a -2b)² , que es la Solución.

Recuerda que el signo del binomio es el signo que tiene el segundo término del trinomio.

_____________________________________________________

Ejercicio 92

Factorar o descomponer en dos factores:

1) a² -2ab +b²

–> Raíz cuadrada de a² = a ; raíz cuadrada de b² = b

–> el binomio es: (a -b)

Por lo tanto (a-b)(a-b) = (a -b)² <– Solución

Otras preguntas