descompocicion de 1600
Respuestas a la pregunta
Respuesta:
Explicación paso a paso:
- 1600 2
- 800 2
- 400 2
- 200 2
- 100 2
- 50 2
- 25 5
- 5 5
- 1
Respuesta:
2×1600=800
2x 800=400
2× 400=200
2× 200=100
2× 100=50
2× 50=25
5×25=5
Explicación paso a paso:
El número 1600 es un número compuesto pues, el número 1600 es divisible entre 1, por él mismo y por lo menos por 2 y 5. Así, es posible factorizarlo, o sea, podemos realizar su descomposición en factores primos.
La descomposición en factores primos de 1600 en forma de potencias es = 26•52.
Los factores primos de 1600 son 2 y 5.
Árbol de factores de 1600
Una vez que 1600 es un número compuesto, podemos construir su árbol de factores como se muestra a continuación (vea explicaciones detalladas al final de esta página):
Utilice nuestra calculadora de factores primos para averiguar si cualquier número dado es primo o compuesto y, en este caso, descomponer y calcular sus factores. En esta página también aparece una tabla de factores primos de 1 a 1000.
¿Qué es la descomposición en los factores primos?
Definición de Factoración
El proceso de factorización es la descomposición de un número compuesto en un producto de factores primos que, si se multiplican, recrean el número original. Los factores, por definición, son los números que se multiplican para crear otro número. Un número primo es un número entero mayor que uno que se divide sólo por 1 y por sí mismo. Por ejemplo, los únicos divisores de 7 son 1 y 7, entonces 7 es un número primo, mientras que el número 72 tiene divisores derivados de 23•32 como 2, 3, 4, 6, 8, 12, 24 ... y el propio 72, haciendo 72 un número compuesto. Observe que los únicos factores "primos" de 72 son 2 y 3, que son números primos.
Ejemplo de descomposición en factores primos
Vamos a realizar la factorización de 72 paso a paso.
Solución 1
Comenzamos con el menor número primo que divide 72, en este caso 2. Podemos escribir 72 como:
72 = 2 x 36
Ahora buscamos el menor número primo que divide 36. Una vez más, podemos usar 2 y escribir 36 como 2 x 18, para dar.
72 = 2 x 2 x 18
18 también es divisible entre 2 (18 = 2 x 9), entonces tenemos:
72 = 2 x 2 x 2 x 9
9 es divisible entre 3 (9 = 3 x 3), entonces tenemos:
72 = 2 x 2 x 2 x 3 x 3
2, 2, 2, 3 y 3 son todos los números primos, esta es la respuesta.
En resumen, podemos escribir el paso a paso así:
72 = 2 x 36
72 = 2 x 2 x 18
72 = 2 x 2 x 2 x 9
72 = 2 x 2 x 2 x 3 x 3
72 = 2 3 x 3 2 (factorización en la forma exponencial)
Solución 2
Usando un árbol de factores. Paso a paso:
Encuentre dos factores del número;
Mire los dos factores y verifique si al menos uno de ellos no es primo;
Si uno de ellos no es primo, Si uno de ellos no es primo, divídalo por el menor primo;
Repita el proceso hasta que todos los factores sean primos, es decir, no da más para dividir.
Vea cómo hacer el árbol de factores de 72:
72
/ \
2 36
/ \
2 18
/ \
2 9
/ \
3 3
72 es divisible entre 2
36 es divisible entre 2
18 es divisible entre 2
9 es divisible entre 3
3 y 3 son primos → paramos
Tomando los números de la izquierda y el número más a la derecha de la última línea (divisores) y multiplicándolos entre sí tenemos,
72 = 2 x 2 x 2 x 3 x 3
72 = 23 x 32 (factorización en la forma exponencial)
Observa que estos divisores son los factores primos. También se llaman hojas del árbol de factores.
Otro ejemplo de descomposición en factores primos
Vea cómo factorizar el número 588:
588
/ \
2 294
/ \
2 147
/ \
3 49
/ \
7 7
588 es divisible entre 2
294 es divisible entre 2
147 es divisible entre 3
49 es divisible entre 7
7 y 7 son primos → paramos
Tomando los números de la izquierda y el número más a la derecha de la última línea (divisores) y multiplicándolos entre sí tenemos,
588 = 2 x 2 x 3 x 7 x 7
588 = 22 x 3 x 72 (fatoração na forma exponencial)