Matemáticas, pregunta formulada por anjimemezal, hace 1 año

desarrollar los ejercicios seleccionados derivando G´(X) de las siguientes funciones ejercicio B. G(x)=∫_1^(x^2+x)▒√(2t+sen(t)) dt


Explicación paso a paso porfa!!!!!

Adjuntos:

Respuestas a la pregunta

Contestado por carbajalhelen
1

Al desarrollar el ejercicio se obtiene:

G'(x) = (2x+1) • √[2(x²+x)+sen(x²+x)]  

Explicación paso a paso:

Datos;

 \int\limits^{x^{2}+x }_1 {\sqrt{2t+sen(t)} } \, dt

Teorema fundamental del calculo:

indica que la derivada simplifica a la integral y se evalúa en función de x;  

 \frac{d}{dx}\int\limits^x_a {f(t)} \, dt=f(x)

\frac{d}{dx}\int\limits^{u(x)}_a {f(t)} \, dt=f(u(x)).u'(x)

Aplicar Teorema fundamental del calculo;

donde;

u(x) = x²+x  

f(x)= G(x) = √[2(x²+x)+sen(x²+x)] • u'(x)

u'(x) = 2x+1

Sustituir;

G'(x) = (2x+1) • √[2(x²+x)+sen(x²+x)]  

Otras preguntas