Desarrolla la división algebraica:
x³+6x²+11x+7 ÷ x²+3x+2
Respuestas a la pregunta
Respuesta:
Para factorizar un polinomio y calcular sus raíces vamos a seguir los siguientes pasos, cuando sean posibles:
Extraer factor común a un polinomio consiste en aplicar la propiedad distributiva.
a · x + b · x + c · x = x (a + b + c)
Una raíz del polinomio será siempre x = 0
Descomponer en factores sacando factor común y hallar las raíces de:
1 x3 + x2 = x2 (x + 1)
La raíces son: x = 0 y x = − 1
2 2x4 + 4x2 = 2x2 (x2 + 2)
Sólo tiene una raíz X = 0; ya que el polinomio, x2 + 2, no tiene ningún valor que lo anule; debido a que al estar la x al cuadrado siempre dará un número positivo, por tanto es irreducible.
3 x2 − ax − bx + ab = x (x − a) − b (x − a) = (x − a) · (x − b)
La raíces son x= a y x = b.
2 1Diferencia de cuadrados
Una diferencia de cuadrados es igual a suma por diferencia.
a2 − b2 = (a + b) · (a − b)
Descomponer en factores y hallar las raíces
1 x2 − 4 = (X + 2) · (X − 2)
Las raíces son X = − 2 y X = 2
2 x4 − 16 = (x2 + 4) · (x2 − 4) = (X + 2) · (X − 2) · (x2 + 4)
Las raíces son X = − 2 y X = 2
2Trinomio cuadrado perfecto
Un trinomio cuadrado perfecto es igual a un binomio al cuadrado.
a2 ± 2 a b + b2 = (a ± b)2
Descomponer en factores los trinomio cuadrados perfectos y hallar sus raíces
La raíz es x = − 3.
La raíz es x = 2.
3ºTrinomio de segundo grado
Para descomponer en factores el trinomio de segundo grado P(x) = a x2 + bx +c , se iguala a cero y se resuelve la ecuación de 2º grado. Si las soluciones a la ecuación son x1 y x2, el polinomio descompuesto será:
a x2 + bx +c = a · (x -x1 ) · (x -x2 )
Descomponer en factores los trinomios de segundo grado y hallar sus raíces
Las raíces son x = 3 y x = 2.
Las raíces son x = 3 y x = − 2.
Descomponer en factores los trinomios de cuarto grado de exponentes pares y hallar sus raíces
x4 − 10x2 + 9
x2 = t
x4 − 10x2 + 9 = 0
t2 − 10t + 9 = 0
x4 − 10x2 + 9 = (x + 1) · (x − 1) · (x + 3) · (x − 3)
x4 − 2x2 − 3
x2 = t
t2 − 2t − 3 = 0
x4 − 2x2 + 3 = (x2 + 1) · (x + ) · (x − )
4º Factorización de un polinomio de grado superior a dos
Utilizamos el teorema del resto y la regla de Ruffini.
Descomposición de un polinomio de grado superior a dos y cálculo de sus raíces
P(x) = 2x4 + x3 − 8x2 − x + 6
1Tomamos los divisores del término independiente: ±1, ±2, ±3.
2Aplicando el teorema del resto sabremos para que valores la división es exacta.
P(1) = 2 · 14 + 13 − 8 · 12 − 1 + 6 = 2 + 1− 8 − 1 + 6 = 0
3Dividimos por Ruffini.
4Por ser la división exacta, D = d · c
(x −1) · (2x3 + 3x2 − 5x − 6 )
Una raíz es x = 1.
Continuamos realizando las mismas operaciones al segundo factor.
Volvemos a probar por 1 porque el primer factor podría estar elevado al cuadrado.
P(1) = 2 · 13 + 3 · 12 − 5 · 1 − 6≠ 0
P(−1) = 2 · (− 1)3 + 3 ·(− 1)2 − 5 · (− 1) − 6= −2 + 3 + 5 − 6 = 0
(x −1) · (x +1) · (2x2 +x −6)
Respuesta:
La respuesta seria x+9
Explicación paso a paso:
Te dejo una foto la resolví mediante el método de Horner