Matemáticas, pregunta formulada por natasg12, hace 1 año

derivada de
4csc(x)^2 +3cot(x)^2 - 4cot(x) - 7​

Respuestas a la pregunta

Contestado por Infradeus10
1

Respuesta:     4\csc ^2\left(x\right)-14\csc ^2\left(x\right)\cot \left(x\right)

Explicación paso a paso:

\frac{d}{dx}\left(4\csc ^2\left(x\right)+3\cot ^2\left(x\right)-4\cot \left(x\right)-7\right)

\mathrm{Aplicar\:la\:regla\:de\:la\:suma/diferencia}:\quad \left(f\pm g\right)'=f\:'\pm g'

=\frac{d}{dx}\left(4\csc ^2\left(x\right)\right)+\frac{d}{dx}\left(3\cot ^2\left(x\right)\right)-\frac{d}{dx}\left(4\cot \left(x\right)\right)-\frac{d}{dx}\left(7\right)

Desarrollar:  \frac{d}{dx}\left(4\csc ^2\left(x\right)\right)  :  \mathrm{Sacar\:la\:constante}:\quad \left(a\cdot f\right)'=a\cdot f\:'

=4\frac{d}{dx}\left(\csc ^2\left(x\right)\right)

\mathrm{Aplicar\:la\:regla\:de\:la\:cadena}:\quad \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx}

f=u^2,\:\:u=\csc \left(x\right)

=4\frac{d}{du}\left(u^2\right)\frac{d}{dx}\left(\csc\left(x\right)\right)

=4\cdot \:2u\left(-\cot \left(x\right)\csc \left(x\right)\right)

\mathrm{Sustituir\:en\:la\:ecuacion}\:u=\csc \left(x\right)

=4\cdot \:2\csc \left(x\right)\left(-\cot \left(x\right)\csc \left(x\right)\right)

=-8\csc ^2\left(x\right)\cot \left(x\right)

Queda:

=-8\csc ^2\left(x\right)\cot \left(x\right)+\frac{d}{dx}\left(3\cot ^2\left(x\right)\right)-\frac{d}{dx}\left(4\cot \left(x\right)\right)-\frac{d}{dx}\left(7\right)

Desarrollar:  \frac{d}{dx}\left(3\cot ^2\left(x\right)\right) : \mathrm{Sacar\:la\:constante}:\quad \left(a\cdot f\right)'=a\cdot f\:'

=3\frac{d}{dx}\left(\cot ^2\left(x\right)\right)

\mathrm{Aplicar\:la\:regla\:de\:la\:cadena}:\quad \frac{df\left(u\right)}{dx}=\frac{df}{du}\cdot \frac{du}{dx}

f=u^2,\:\:u=\cot \left(x\right)

=3\frac{d}{du}\left(u^2\right)\frac{d}{dx}\left(\cot \left(x\right)\right)

=3\cdot \:2u\left(-\csc ^2\left(x\right)\right)

\mathrm{Sustituir\:en\:la\:ecuacion}\:u=\cot \left(x\right)

=3\cdot \:2\cot \left(x\right)\left(-\csc ^2\left(x\right)\right)

\mathrm{Simplificar}

=-6\csc ^2\left(x\right)\cot \left(x\right)

Queda:

=-8\csc ^2\left(x\right)\cot \left(x\right)-6\csc ^2\left(x\right)\cot \left(x\right)-\frac{d}{dx}\left(4\cot \left(x\right)\right)-\frac{d}{dx}\left(7\right)

Desarrollar:  \frac{d}{dx}\left(4\cot \left(x\right)\right)   : \mathrm{Sacar\:la\:constante}:\quad \left(a\cdot f\right)'=a\cdot f\:'

=4\frac{d}{dx}\left(\cot \left(x\right)\right)

\mathrm{Aplicar\:la\:regla\:de\:derivacion}:\quad \frac{d}{dx}\left(\cot \left(x\right)\right)=-\csc ^2\left(x\right)

=4\left(-\csc ^2\left(x\right)\right)

\mathrm{Simplificar}

=-4\csc ^2\left(x\right)

Queda:

=-8\csc ^2\left(x\right)\cot\left(x\right)-6\csc ^2\left(x\right)\cot \left(x\right)-\left(-4\csc ^2\left(x\right)\right)-\frac{d}{dx}\left(7\right)

Desarrollar: \frac{d}{dx}\left(7\right)  : \mathrm{Derivada\:de\:una\:constante}:\quad \frac{d}{dx}\left(a\right)=0

=0

Queda finalmente :

=-8\csc ^2\left(x\right)\cot \left(x\right)-6\csc ^2\left(x\right)\cot \left(x\right)-\left(-4\csc ^2\left(x\right)\right)-0

\mathrm{Aplicar\:la\:regla}\:-\left(-a\right)=a

=-8\csc ^2\left(x\right)\cot \left(x\right)-6\csc ^2\left(x\right)\cot \left(x\right)+4\csc ^2\left(x\right)-0\mathrm{Sumar\:elementos\:similares:}\:-8\csc ^2\left(x\right)\cot \left(x\right)-6\csc ^2\left(x\right)\cot \left(x\right)=-14\csc ^2\left(x\right)\cot \left(x\right)=-14\csc ^2\left(x\right)\cot \left(x\right)+4\csc ^2\left(x\right)-0

14\csc ^2\left(x\right)\cot \left(x\right)+4\csc ^2\left(x\right)-0=-14\csc ^2\left(x\right)\cot \left(x\right)+4\csc ^2\left(x\right)

=4\csc ^2\left(x\right)-14\csc ^2\left(x\right)\cot \left(x\right)   ⇒ Solución

Otras preguntas