Matemáticas, pregunta formulada por robinfa05, hace 1 año

. Demostrar que : 〖2x〗^2-〖4y〗^2+12x+24y+18=0 representa una hipérbola y determine:

a Centro
b Focos
c Vértices

Respuestas a la pregunta

Contestado por michellinsanchez
0
Para la resolucion utilizaremos la Segunda ecuación ordinaria de la hipérbola.


Tenemos la ecuación:

2x^2 - 4y^2 + 12x + 24y + 18 = 0




Reducimos la ecuación completando los cuadrados y tenemos,


2 (x^2 + 6x) - 4 (y^2 - 6y) = -18

2 (x^2 + 6x + 9) - 4 (y^2 - 6y + 9) = -18 - 18 + 36

2 (x + 3)^2 - 4 (y - 3)^2 = 36

[(x + 3)^2] / (18) - [(y - 3)^2] / 9 = 1      ----> 
Forma ordinaria de la ecuación


a) Centro

C(-3, 3)

Otras preguntas