Definicion matematica de numeros irracionales
Respuestas a la pregunta
En matemáticas, un número irracional es un número que no puede ser expresado como una fracción m⁄n, donde m y n sean enteros y n sea diferente de cero. Es cualquier número real que no es racional, y su expresión decimal no es ni exacta ni periódica.
Un decimal infinito (es decir, con infinitas cifras) aperiódico, como √7 = 2,645751311064591 no puede representar un número racional. A tales números se les nombra "números reales o irracionales". Esta denominación significa la imposibilidad de representar dicho número como razón de dos números enteros. El número pi ({\displaystyle \pi }), número e y el número áureo ({\displaystyle \phi }) son otros ejemplos de números irracionales.
Respuesta:
Los números irracionales son números reales que no pueden expresarse ni de manera exacta ni de manera periódica. En otras palabras, los números irracionales son números reales que no somos capaces de expresarlos en forma de fracción porque desconocemos tanto el numerador como el denominador.
Explicación paso a paso: