Matemáticas, pregunta formulada por salexandra30763, hace 1 año

Definición de teorema de Euclides

Respuestas a la pregunta

Contestado por MGC21
2

El teorema de Euclides es una afirmación fundamental en la teoría de números que afirma que hay infinitos números primos. Hay varias demostraciones del teorema.

Se toma un conjunto arbitrario pero finito de números primos p1, p2, ···, pn, y se considera el producto de todos ellos más uno, q=p1p2 ··· pn+1. Este número es obviamente mayor que 1 y distinto de todos los primos pi de la lista. El número q puede ser primo o compuesto. Si es primo tendremos un número primo que no está en el conjunto original. Si, por el contrario, es compuesto, entonces existirá algún factor p que divida a q. Suponiendo que p es alguno de los pi, se deduce entonces que p divide a la diferencia q-p1p2 ··· pn=1, pero ningún número primo divide a 1, es decir, se ha llegado a un absurdo por suponer que p está en el conjunto original. La consecuencia es que el conjunto que se escogió no es exhaustivo, ya que existen números primos que no pertenecen a él, y esto es independiente del conjunto finito que se tome.

Existen numerosas demostraciones parecidas a ésta

Otras preguntas