Matemáticas, pregunta formulada por Roblesita, hace 1 año

Deduce la ecuacion que determina el lugar geometrico de los puntos cuya distancia al punto A (2,-3) es igual ala distancia al punto B (0,-1)

Respuestas a la pregunta

Contestado por melopeya
16

Respuesta:

A) El lugar geométrico es una parábola: y²-6y-8x-23=0  

B)  Ecuación de la parábola es: y²+2y+1= 6x-3

A) La ecuación del lugar geométrico de los puntos cuya distancia al punto fijo (-2,3)sea igual a la distancia de la recta x+6=0

La distancia de (-2,3) a x=-6 :

d=(1*-2+0*3+6)/√(1²+0²)  

d=(-2+6)/√(1)  

d=4/1

d=4   unidades

Esta distancia = 2p  

4=2p  

p=4/2  

p=2  

Vértice de la parábola esta en el punto medio de (-2,3) a la recta x=-6  

en (-4,3)  (h,k)

El lugar geométrico es una parábola:

Como el vértice está a la izquierda el foco es una parábola que abre hacia la derecha de la forma  

(y-k)²=4p(x-h)  

(y-3)²=4(2)(x+4)  

y²-6y+9 = 8(x+4)  

y²-6y+9 = 8x+32  

y²-6y-8x+9-32=0  

y²-6y-8x-23=0  

Explicación paso a paso:

Contestado por mary24457181ozqyux
1

Ya que la distancia entre A y B es d=|2-(-3)|+|0-(-1)|=5

La ecuación del lugar geométrico será: d=|x-2|+|y-(-3)|=5

Ecuación del lugar geométrico

La ecuación del lugar geométrico es la expresión matemática que determina el conjunto de puntos que cumplen una determinada condición. En este caso, la ecuación del lugar geométrico determina los puntos cuya distancia al punto A es igual a la distancia al punto B.

Ecuación del lugar geométrico

d=|x-a|+|y-b|

Al sustituir los puntos tenemos:

d=|x-2|+|y-(-3)|=5

Conoce más sobre el lugar geométrico en: https://brainly.lat/tarea/9548056

Adjuntos:
Otras preguntas