Matemáticas, pregunta formulada por felipechiqui5441, hace 1 año

De una progrecion geometrica se conoce r=2 y a 8 =768 halla la suma de los 10 primeros terminos , .

Respuestas a la pregunta

Contestado por Usuario anónimo
12

De una progresión geométrica se conoce r=2 y a 8 =768 halla la suma de los 10 primeros términos.

Razón (r) = 2

Octavo término (a₈) = 768

Número de términos (n) = 10

Calculamos el primer término de la P.G

an = a1 * rⁿ⁻¹

768 = a1 * 2⁸⁻¹

768 = a1 * 2⁷

768 = a1 * 128

768/128 = a1

6 = a1

a1 = 6------------Es el valor del primero término de la P.G

Ahora tenemos que calcular el décimo término de la P.G

a₁₀ = a1 * rⁿ⁻¹

a₁₀ = 6 * 2¹⁰⁻¹

a₁₀ = 6 * 2⁹

a₁₀ = 6 * 512

a₁₀ = 3072------------Es el valor del décimo término de la P.G

Ahora vamos a calcular la suma de los 10 primero términos de la P.G

S₁₀ = (a₁₀ * r - a¹) / (r - 1)

S₁₀ = (3072 * 2 - 6) / (2 - 1)

S₁₀ = (6144 - 6) / 1

S₁₀ = 6138 / 1

S₁₀ = 6138

RESPUESTA: La suma de los 10 primeros términos de la P.G es: 6138

Otras preguntas