Matemáticas, pregunta formulada por Benjamin4245, hace 1 año

De un cuadrado, los vértices del cuadrado interno intersectan al exterior en sus puntos medios, la longitud de los lados del cuadrado exteriores : raíz cuadrada de 2m . Con base en ello, cuál es el valor del área del cuadrado interior?

Respuestas a la pregunta

Contestado por superg82k7
2

Respuesta:

Un metro cuadrado (1 m²)

Explicación paso a paso:

Datos:

Lado del cuadro exterior = √2 m

Se plantea el diagrama de los cuadrados exterior cuya longitud de lado es √2 m y el cuadro interno cuyos vértices cortan en el punto medio al cuadro exterior. (ver imagen)

De acuerdo a los datos y a la imagen, el punto medio divide en dos partes iguales al cuadrado externo por lo que cada porción tiene una longitud de √2/2 m; que es la medida de cada cateto en los cuales se divide el triángulo rectángulo formado entre el cuadrado exterior y la hipotenusa será la longitud de la arista del cuadro interior.

Aplicando el Teorema de Pitágoras.

L² = (√2/2 m)² + (√2/2 m)²

L² = (2/4 m²) + (2/4 m²) = (1/2 m²) + (1/2m²) = 1 m²

L² = 1 m²

Despejando L.

L = √1 m² = 1 m

L = 1 m

En consecuencia, el área del cuadrado interior es 1 metro cuadrado (1 m²)  

✔ En el enlace siguiente encontraras más detalles relacionados al tema:

https://brainly.lat/tarea/10589733

Adjuntos:
Otras preguntas