Matemáticas, pregunta formulada por bb242125, hace 1 año

¿De cuántas formas se pueden formar ordenando las letras ABCDEF con la condición de que no contenga la subcadena AB y CD?

Respuestas a la pregunta

Contestado por luismgalli
3

Respuesta:

Se pueden formar ordenando 6 letras distintas con la condición de que no contengan la sub cadena AB y CD de 1440 maneras

Explicación paso a paso:

Como se tiene que tomar en cuenta el orden de la posición de las letras entonces hacemos dos permutaciones de 6 letras 4 posiciones:

Pn,k =  n!//n-k)

P6,4 = 6!/2! = 6*5*4*3*2*1/2*1 = 720 maneras para ABXXXX

P6,4 = 6!/2! = 6*5*4*3*2*1/2*1 = 720 maneras para CDXXXX

Se pueden formar ordenando 6 letras distintas con la condición de que no contengan la sub cadena AB y CD de 1440 maneras.

Ver en Brainly - https://brainly.lat/tarea/11092900

Otras preguntas