De acuerdo con la segunda ley de Newton la fuerza resultante F que se aplica sobre un cuerpo se puede hallar de acuerdo con la expresión F=ma, donde m es la masa del cuerpo que la vamos a considerar constante y a la aceleración que alcanza el cuerpo debido a la fuerza aplicada sobre él.
Si la fuerza resultante sobre un cuerpo se cuadruplica, que sucede con su aceleración
A.
disminuye a la cuarta parte.
B.
disminuye a la mitad.
C.
permanece igual.
D.
se cuadruplica. con procedimiento porf
Respuestas a la pregunta
Respuesta:
La Segunda Ley de Newton también conocida como Ley Fundamental de la Dinámica, es la que determina una relación proporcional entre fuerza y variación de la cantidad de movimiento o momento lineal de un cuerpo. Dicho de otra forma, la fuerza es directamente proporcional a la masa y a la aceleración de un cuerpo.
Explicación
La Primera Ley de Newton nos dice que para que un cuerpo altere su movimiento es necesario que exista algo que provoque dicho cambio. Ese algo es lo que conocemos como fuerzas . Estas son el resultado de la acción de unos cuerpos sobre otros.
La Segunda Ley de Newton se encarga de cuantificar el concepto de fuerza. Nos dice que la fuerza neta aplicada sobre un cuerpo es proporcional a la aceleración que adquiere dicho cuerpo. La constante de proporcionalidad es la masa del cuerpo, de manera que podemos expresar la relación de la siguiente manera:
F = m a
Esta ley explica qué ocurre si sobre un cuerpo en movimiento (cuya masa no tiene por qué ser constante) actúa una fuerza neta: la fuerza modificará el estado de movimiento, cambiando la velocidad en módulo o dirección. En concreto, los cambios experimentados en la cantidad de movimiento de un cuerpo son proporcionales a la fuerza motriz y se desarrollan en la dirección de esta; esto es, las fuerzas son causas que producen aceleraciones en los cuerpos.
Segundaley.jpg
Ejemplo: Si un carro de tren en movimiento con una carga, se detiene súbitamente sobre sus rieles, porque tropezó con un obstáculo, su carga tiende a seguir desplazándose con la misma velocidad y dirección que tenía en el momento del choque.
La expresión de la Segunda Ley de Newton que hemos dado es válida para cuerpos cuya masa sea constante. Si la masa varia, como por ejemplo un cohete que va quemando combustible, no es válida la relación F = m • a. Vamos a generalizar la Segunda Ley de Newton para que incluya el caso de sistemas en los que pueda variar la masa.
Para ello primero vamos a definir una magnitud física nueva. Esta magnitud física es la cantidad de movimiento que se representa por la letra p y que se define como el producto de la masa de un cuerpo por su velocidad , es decir:
p = m • v
La cantidad de movimiento también se conoce como momento lineal. Es una magnitud vectorial y, en el Sistema Internacional se mide en Kg•m/s . En términos de esta nueva magnitud física, la Segunda Ley de Newton se expresa de la siguiente manera: La Fuerza que actúa sobre un cuerpo es igual a la variación temporal de la cantidad de movimiento de dicho cuerpo, es decir,
F = dp/dt
De esta forma incluimos también el caso de cuerpos cuya masa no sea constante. Para el caso de que la masa sea constante, recordando la definición de cantidad de movimiento y que como se deriva un producto tenemos: F = d(m•v)/dt = m•dv/dt + dm/dt •v Como la masa es constante
dm/dt = 0
y recordando la definición de aceleración, nos queda
F = m a
tal y como se había visto anteriormente.
Otra consecuencia de expresar la Segunda Ley de Newton usando la cantidad de movimiento es lo que se conoce como Principio de conservación de la cantidad de movimiento. Si la fuerza total que actúa sobre un cuerpo es cero, la Segunda Ley de Newton nos dice que:
0 = dp/dt
Es decir, que la derivada de la cantidad de movimiento con respecto al tiempo es cero. Esto significa que la cantidad de movimiento debe ser constante en el tiempo (la derivada de una constante es cero). Esto es el Principio de conservación de la cantidad de movimiento: si la fuerza total que actúa sobre un cuerpo es nula, la cantidad de movimiento del cuerpo permanece constante en el tiempo.