Dados los vectores A y B, de igual módulo, hallar en ángulo entre ellos, sabiendo que su resultante tiene el mismo módulo que sus 2 componentes
Respuestas a la pregunta
Respuesta: Dado el vector{\overrightarrow{u}=(2,-1)} y dos vectores equipolentes a {\overrightarrow{u}, \overrightarrow{AB}} y {\overrightarrow{CD}}, determinar {B} y {C} sabiendo que {A=(1,-3)} y {D=(2,0)}.
Solución
3 Calcular la distancia entre los puntos {A=(2,1)} y {B=(-3,2)}.
Solución
4 Si {\vec{v}} es un vector de componentes {(3,4)}, hallar un vector unitario de su misma dirección y sentido.
Solución
5 Hallar un vector unitario de la misma dirección que el vector {\vec{v}=(8,-6)}.
Solución
6 Calcula las coordenadas de {D} para que el cuadrilátero de vértices {A=(-1,-2), B=(4,-1), C=(5,2)} y {D} sea un paralelogramo.
Solución
7 Hallar las coordenadas del punto medio del segmento {AB}, de extremos {A=(3,9)} y {B=(-1,5)}.
Solución
8 Hallar las coordenadas del punto {C}, sabiendo que {B=(2,-2)} es el punto medio de {AC}, donde {A=(-3,1)}.
Solución
9 Averiguar si están alineados los puntos {A=(-2,-3), B=(1,0)} y {C=(6,5)}.
Solución
10 Calcular el valor de {a} para que los puntos {A=(2,1), B=(4,2), C=(6,a)} estén alineados.
Solución
Explicación: