DADA LA FUNCION
F(X){X2-2X+1 X ≥3 g(x) √x-1 x≥1
|X-5| X<3 2/x+3 x<1
calcular
(f+g)(0)
(f o g)(5)
Respuestas a la pregunta
a) (f + g)(0)
(f + g)(0) = f(0) + g(0)
(f + g)(0) = |0 - 5| +
(f + g)(0) = 5 + 2/3
b) (f o g)(5)
g(5) = √ 5-1 = √4 = √
f(2) = 2 – 5 = 3
(f o g)(5) = 3
La función (f+g)(0) = 0 y (f o g)(5)= 0.52
Explicación paso a paso:
Tenemos que f(x) = x²-2x+1
g(x) = √x-1
Ahora calculamos (f+g)(x)
(f+g) = x²-2x+1 + √x-1
f+g = x²-2x+√x
Evaluando en x=0 tenemos:
f+g = 0²-2.0+√0
f+g(0)= 0
Ahora procedemos a calcular fog:
(fog)= (√x-1)²-2(√x-1)+1
fog= x+1-2√x-2+1
fog= x-2√x
Evaluando en x=5 tenemos que:
(fog)(5) = 5-2√5
(fog)(5)= 0.52
En conclusión podemos decir que la suma de las funciones y la función compuesta evaluada en los puntos respectivos es igual a : La función (f+g)(0) = 0 y (f o g)(5)= 0.52