dada la funcion f(x)=-3x+3.determina el valor de f (-1/6)+f(1)-f(-5)
Respuestas a la pregunta
Respuesta:
Evaluando funciones
Objetivo de aprendizaje
· Dada una función, descrita por una ecuación, encontrar los valores de la función (salidas) para entradas específicas.
Introducción
En este curso, has trabajado con ecuaciones algebraicas. Muchas de estas ecuaciones son funciones. Por ejemplo y = 4x +1 es una ecuación que representa una función. Cuando metes valores de x, puedes determinar una salida de y. En este caso, si sustituyes x = 10 en la ecuación encontrarás que y debe ser 41; no hay otro valor de y que pueda hacer la ecuación válida.
En lugar de usar la variable y, las ecuaciones de funciones pueden escribirse usando notación de función. La notación de función es muy útil cuando trabajas con más de una función y sustituyendo más de una variable para x.
Notación de función
Algunas personas piensan en las funciones como “máquinas matemáticas.” Imagina que tienes una máquina que cambia un número de acuerdo con una regla específica, como “multiplica por 3 y luego suma 2” o “divide entre 5, suma 25 y multiplica por −1.” Si pones un número en la máquina, un nuevo número saldrá del otro lado, habiendo cambiado según la regla. El número que entra se llama entrada y el número que sale se llama salida.
También puedes llamar a esta función “f” (de función). Si pones x en la caja, sale f(x). Hablando matemáticamente, x es la entrada o la “variable independiente,” y f(x) es la salida o la “variable dependiente,” porque depende del valor de x.
f(x)= 4x + 1 está escrita en notación de función y se lee como “f de x es igual a 4x mas 1.” Representa la siguiente situación: Una función llamada f actúa sobre una entrada, x y produce f(x) que es igual a 4x + 1. Esto es lo mismo que la ecuación y = 4x + 1.
La notación de función te da más flexibilidad porque no tienes que usar la y para cada ecuación. En su lugar, puedes usar f(x) o g(x) o c(x). Esto puede ser una manera útil de distinguir ecuaciones o funciones cuando trabajas con más de una a la vez.
Podrías escribir la fórmula del perímetro, P = 4s, como una función p(x) = 4x y la fórmula del área, A = x2, como a(x) = x2. Esto haría más fácil graficar ambas funciones en la misma gráfica sin confundir las variables.