Dada la ecuación 25x^2+4y^2=10 determine las coordenadas de los vertices ,focos, los ejes mayor y menor la excentricidad ,la longitud de sus lados rectos .
Respuestas a la pregunta
25x² + 4y² = 10
25x² / 10 + 4y² / 10 = 1
x² / (10 / 25) + y² / (10 / 4) = 1
y² / (10 / 4) + x² / (10 / 25) = 1
Ecuación canónica de la elipse:
y² / a² + x² / b² = 1, a > b
Centro: C(0, 0)
Eje focal: x = 0
Semieje mayor = a
Semieje menor = b
a > b
a² > b²
10 / 4 > 10 / 25
a² = 10 / 4
a² = 5 / 2
a = √(5 / 2)
b² = 10 / 25
b² = 2 / 5
b = √(2 / 5)
Eje mayor = 2a
Eje menor = 2b
2a = 2(√(5 / 2)
2a = 2√(5 / 2)
2b = 2(√(2 / 5))
2b = 2√(2 / 5)
Vértices: V₁(0, a), V₂(0, - a), V₃(- b, 0), V₄(b, 0)
V₁(0, √(5 / 2)), V₂(0, - √(5 / 2)), V₃(- √(2 / 5), 0), V₄(√(2 / 5), 0)
Focos: F₁(0, - c), F₂(0, c)
Semidistancia focal = c
c² = a² - b²
c² = (√(5 / 2))² - (√(2 / 5))²
c² = 5 / 2 - 2 / 5
c² = (25 - 4) / 10
c² = 21 / 10
c = √(21 / 10)
F₁(0, - √(21 / 10)), F₂(0, √(21 / 10))
Excentricidad = e
e = c / a
e = √(21 / 10) / √(5 / 2)
e = √21 / √10 / √5 / √2
e = √21√2 / (√10√5)
e = √21√2 / (√2√5√5)
e = √21 / 5
Lado recto = LR
LR = 2b² / a
LR = 2(√(2 / 5))² / √(5 / 2)
LR = 2(2 / 5) / √(5 / 2)
LR = 4 / 5 / √(5 / 2)
LR = 4 / 5 / √5 / √2
LR = 4√2 / 5√5
Vértices: V₁(0, √(5 / 2)), V₂(0, - √(5 / 2)), V₃(- √(2 / 5), 0), V₄(√(2 / 5), 0)
Focos: F₁(0, - √(21 / 10)), F₂(0, √(21 / 10))
2a = 2√(5 / 2)
2b = 2√(2 / 5)
e = √21 / 5
LR = 4√2 / 5√5
Datos:
4x2 + 25y2 = 100
Determinar :
Vertices A1 , A2, B1, B2 =?
Focos F1 , F2 =?
Longitud de eje mayor y menor 2*a , 2 * b =?
excentricidad e =?
Longitud de lado recto Lr=?
gráfica=?
solución :
Ecuación de una elipse de centro (0 ,0 )
4x² + 25y² = 100 se divide entre 100
4x²/100 + 25y²/ 100 = 100/100
x² / 25 + y² / 4 = 1
a² = 25 ⇒ a = √ 25= 5
b² = 4 ⇒ b = √4 = 2
a² = b² + c²
c² = a² - b² = 25 - 4 = 16
c² = 16 ⇒ c= √16 = 4
vertices : A₁ = ( 5 , 0 ) A₂ = ( - 5 ,0 )
B₁ = ( 0 , 2 ) B₂ = ( 0 , - 2 )
focos : F₁ ( 4 , 0) F₂ ( - 4 ,0 )
excentricidad e = c / a
e = 4 / 5
Longitud de eje mayor = 2 * a = 2 * 5 = 10
Longitud de eje menor = 2 * b = 2 * 2 = 4
Longitud de lado recto = Lr = 2* b² / a
Lr = 2 * ( 2 )² / 5 = 8 / 5
Datos:
4x2 + 25y2 = 100
Determinar :
Vertices A1 , A2, B1, B2 =?
Focos F1 , F2 =?
Longitud de eje mayor y menor 2*a , 2 * b =?
excentricidad e =?
Longitud de lado recto Lr=?
gráfica=?
solución :
Ecuación de una elipse de centro (0 ,0 )
4x² + 25y² = 100 se divide entre 100
4x²/100 + 25y²/ 100 = 100/100
x² / 25 + y² / 4 = 1
a² = 25 ⇒ a = √ 25= 5
b² = 4 ⇒ b = √4 = 2
a² = b² + c²
c² = a² - b² = 25 - 4 = 16
c² = 16 ⇒ c= √16 = 4
vertices : A₁ = ( 5 , 0 ) A₂ = ( - 5 ,0 )
B₁ = ( 0 , 2 ) B₂ = ( 0 , - 2 )
focos : F₁ ( 4 , 0) F₂ ( - 4 ,0 )
excentricidad e = c / a
e = 4 / 5
Longitud de eje mayor = 2 * a = 2 * 5 = 10
Longitud de eje menor = 2 * b = 2 * 2 = 4
Longitud de lado recto = Lr = 2* b² / a
Lr = 2 * ( 2 )² / 5 = 8 / 5