cuantos terminos tiene una función lineal y que representa cada uno
Respuestas a la pregunta
Contestado por
1
funciones lineales:
se llaman asi por que solamente tienen un coeficiente lineal Ax
y uno independiente C
y son de la forma
Ax+C
y normalmente la pendiente es el coeficiente "A"
Saludos!
se llaman asi por que solamente tienen un coeficiente lineal Ax
y uno independiente C
y son de la forma
Ax+C
y normalmente la pendiente es el coeficiente "A"
Saludos!
Contestado por
1
Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio son también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.
Definición f: R —> R / f(x) = a.x+b donde a y b son números reales, es una función lineal.
Este último renglón se lee: f de R en R tal que f de equis es igual a a.x+b
Por ejemplo, son funciones lineales f: f(x) = 2x+5 , g: g(x) = -3x+7, h: h(x) = 4
Definición: Las funciones lineales son polinomios de primer grado. ver grafica ejes
Recordemos que los polinomios de primer grado tienen la variable elevada al exponente 1. Es habitual no escribir el exponente cuando este es 1.
Ejemplos de funciones lineales: a(x) = 2x+7 b(x) = -4x+3 f(x) = 2x + 5 + 7x - 3
De estas funciones, vemos que la f no está reducida y ordenada como las demás. Podemos reducir términos semejantes para que la expresión quede de una forma mas sencilla, f(x) = 9x + 2
Tambien recordemos que hemos convenido que cuando no establecemos en forma explicita el dominio y el codominio de una función, supondremos que es el mayor conjunto posible en cada caso.
Por ejemplo, si hablamos de la función f, de dominio real y codominio real, tal que f(x)= 2x-6, anotaremos f: R ——-> R / f(x) = 2x-6 Siendo el dominio todos los números reales, R, y el codominio también, todos los números reales, R.
Esto se lee " f de R en R tal que f de x es igual a 2x-6"
Vamos a graficar esta función, que tal cual lo vimos en la definición, es una función lineal por ser de primer grado. Para graficarla haremos una tabla de valores.
f: R ——> R / f(x) = 2x-6
Le vamos dando valores a "x". ¿Que valores le podemos dar? Cualquiera que este dentro del dominio.
Por ejemplo, si x = 5 , entonces f(x) pasa a ser f(5), que es f(5) = 2.(5)-6 f(5) = 4
Definición f: R —> R / f(x) = a.x+b donde a y b son números reales, es una función lineal.
Este último renglón se lee: f de R en R tal que f de equis es igual a a.x+b
Por ejemplo, son funciones lineales f: f(x) = 2x+5 , g: g(x) = -3x+7, h: h(x) = 4
Definición: Las funciones lineales son polinomios de primer grado. ver grafica ejes
Recordemos que los polinomios de primer grado tienen la variable elevada al exponente 1. Es habitual no escribir el exponente cuando este es 1.
Ejemplos de funciones lineales: a(x) = 2x+7 b(x) = -4x+3 f(x) = 2x + 5 + 7x - 3
De estas funciones, vemos que la f no está reducida y ordenada como las demás. Podemos reducir términos semejantes para que la expresión quede de una forma mas sencilla, f(x) = 9x + 2
Tambien recordemos que hemos convenido que cuando no establecemos en forma explicita el dominio y el codominio de una función, supondremos que es el mayor conjunto posible en cada caso.
Por ejemplo, si hablamos de la función f, de dominio real y codominio real, tal que f(x)= 2x-6, anotaremos f: R ——-> R / f(x) = 2x-6 Siendo el dominio todos los números reales, R, y el codominio también, todos los números reales, R.
Esto se lee " f de R en R tal que f de x es igual a 2x-6"
Vamos a graficar esta función, que tal cual lo vimos en la definición, es una función lineal por ser de primer grado. Para graficarla haremos una tabla de valores.
f: R ——> R / f(x) = 2x-6
Le vamos dando valores a "x". ¿Que valores le podemos dar? Cualquiera que este dentro del dominio.
Por ejemplo, si x = 5 , entonces f(x) pasa a ser f(5), que es f(5) = 2.(5)-6 f(5) = 4
Otras preguntas
Euskera,
hace 8 meses
Historia,
hace 8 meses
Matemáticas,
hace 1 año
Matemáticas,
hace 1 año
Matemáticas,
hace 1 año
Matemáticas,
hace 1 año