Matemáticas, pregunta formulada por Bizza, hace 1 año

¿Cuántos términos tiene la sucesión siguiente? 3; 6; 11; 18;…….; 1602

Con procedimiento completo por favor

Respuestas a la pregunta

Contestado por SmithValdez
10

\ PROPIEDADES:\\\\\ sucesion \ de \ segundo\ orden:\\a_{1} {\ {\ {\ {\ a_{2} {\ {\ {\ {\ a_{3} {\ {\ {\ {\ a_{4} {\ {\ {\ {\ a_{5}  , ......a_{n}\\\\ {\ {\ +n {\ {\ +m{\ {\ {\ +p {\ {\ {\ +q\\ {\ {\  {\ {\ +r  {\ {\  {\ {\ +r  {\ {\ {\ {\ +r\\\\termino\ general\ :\\a_{n}=a_{1} .C^{n-1} _{0} +n .C^{n-1} _{1}+r.C^{n-1} _{2}\\suma\ de\ n\ terminos:\\S=a_{1} .C^{n-1} _{1} +n .C^{n-1} _{2}+r.C^{n-1} _{3}\\\\

\ sucesion \ de \ tercer\ orden:\\a_{1} {\ {\ {\ {\ a_{2} {\ {\ {\ {\ a_{3} {\ {\ {\ {\ a_{4} {\ {\ {\ {\ a_{5}  , ......a_{n}\\\\ {\ {\ +n {\ {\ +m{\ {\ {\ +p {\ {\ {\ +q\\ {\ {\  {\ {\ +r  {\ {\  {\ {\ +r  {\ {\ {\ {\ +r \\ {\ {\ {\  {\ {\  {\  {\ +k  {\ {\ {\  {\ {\   {\ +k \\\\termino\ general\ :\\a_{n}=a_{1} .C^{n-1} _{0} +n .C^{n-1} _{1}+r.C^{n-1} _{2}+k .C^{n-1} _{3}sucesion \ de \ segundo\ orden:\\a_{1} {\  {\ {\ {\ {\ a_{2}  {\ {\ {\ {\ {\ a_{3}  {\  {\ {\ {\ {\ a_{4} {\  {\ {\ {\ {\ a_{5} {\  {\ {\ {\ {\ a_{6}   , ......a_{n} \\\\{\ {\ {\ {\ +n {\ {\ +m {\ {\ +p {\ {\  {\ +q  {\  {\  {\ +t \\{\ {\ {\ {\ {\ {\ {\ +d {\ {\ {\ +f {\ {\ +h {\ {\  {\ +e\\{\  {\ {\  {\ {\ {\ {\ {\ {\ {\ +x {\ {\ +y {\ {\ +z\\{\ {\ {\ {\  {\ {\  {\ {\ {\ {\ {\ {\ {\ +r {\ {\ {\  {\ +r \\\\termino\ general\ :\\a_{n}=a_{1} .C^{n-1} _{0} +n .C^{n-1} _{1}+d.C^{n-1} _{2}+xC^{n-1} _{3}+rC^{n-1} _{4}

REPUESTA:

3; 6; 11; 18;…….; 1602

nos piden n

3  ; 6 ; 11; 18;…….; 1602

 +3  +5  +7

     +2   +2

1602=3.\frac{(n-1)!}{(n-1-0)!0!} +3\frac{(n-1)!}{(n-1-1)!1!}+2\frac{(n-1)!}{(n-1-2)!2!}\\1599=n^{2}-1\\ n=40

Otras preguntas