Estadística y Cálculo, pregunta formulada por citlarotcv01, hace 11 meses

¿Cuantos número diferentes de placas se pueden formar con los números dígitos y las letras del alfabeto ,si cada placa consta de 3 letras y 3 digitos,y esta permitida la repetición?

Respuestas a la pregunta

Contestado por Kimvane07
4

Respuesta:

Variaciones con repetición de 20 elementos tomados de tres en tres => 20x20x20 = 8000 variaciones distintas en lo que se refiere a las letras. Si para cada combinación de letras tenemos 10.000 posibles números, son 8000x10000 = 80.000.000 de matriculas diferentes


citlarotcv01: no comprendo de donde sacaste el 20
Contestado por lactomato
2

Respuesta: 17,576,000 placas

Explicación:

Usaré la fórmula de las permutaciones con reemplazo o sustitución, porque dices que está permitida la repetición.

Donde n es el número de cosas que se pueden elegir y se escogen x de ellas, se permite que se repitan y el orden no importa.

Tenemos 26 letras en el abecedario y 10 dígitos:

a b c d e f g h i j k l m n o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9

Para las letras: 26³ = 17,576

Para los números: 10³ = 1000

Para el total: (17,576)(1000) = 17,576,000

Espero que sea de ayuda ^^ si tengo algún error me sería de mucha utilidad que me lo hagan saber ya que yo también estoy aprendiendo del tema.

Otras preguntas