Estadística y Cálculo, pregunta formulada por sleeping32, hace 2 meses

cuantos nueros de tres dígitos se pueden formar con los dígitos 1 2 3 4 5 y 6 si cada digito se puede usar solo una vez?
cuantos de estos numero son impares?
cuantos son mayores de 330?

Respuestas a la pregunta

Contestado por kurama4165
2

Respuesta:

Se pueden formar 90 números impares y 105 números mayores que 330

Permutacion: importa el orden de los dígitos del numero

P(n,k) = n!/(n-k)!

Si r = 1

P(n,1) = n

Un número es par: si termina en 0 o en un número par, de lo contrario es impar

7 números: 0,1,2,3,4, 5 y 6

Cada dígito puede esta solo una vez

Posibilidades del primer dígito: (1,2 y 3)

P(3,1) = 3

La cantidad de posibilidades para el segundo  y tercer digito dígito sera la cantidad de permutaciones de 6 en 2:

P(6,2) = 6!/(6-2)! = 6!/4! = 6*5 = 30

La cantidad de números a formar sera:

3*30 = 90

¿Cuántos de estos números son impares y cuantos son mayores de 330?

P(3,1)*P(5,1) = 3*5 = 15

P(3,1)*P(6,2) = 3*6!/(6-2)! = 3*6!/4! = 3*6*5 = 3*30 = 90

La cantidad total de números que se pueden formar:

15 + 90 = 105

Explicación:

(esta respuesta no es mia, por lo cual, créditos al autor)

Contestado por emmanuel3481
0

Respuesta:

345---653---214---146---534---421 (impares:345--653--534--421)(mayores de 330:345--653--534--421)

Explicación:

se pueden hacer muchos números de tres dígitos pero solo son ejemplos

Otras preguntas