¿Cuántos cuadrados perfectos 13 + 4 hay entre 924 y 5920?
Respuestas a la pregunta
Respuesta:
La fórmula general para el n-ésimo número cuadrado es n2. Esta expresión es igual a la suma de los primeros n números impares, demostrable por inducción matemática, registrada en la siguiente fórmula:
{\displaystyle n^{2}=\sum _{k=1}^{n}\;(2k-1)}{\displaystyle n^{2}=\sum _{k=1}^{n}\;(2k-1)}
Ejemplo:
{\displaystyle 5^{2}=\sum _{k=1}^{5}\;(2k-1)=1+3+5+7+9=25}{\displaystyle 5^{2}=\sum _{k=1}^{5}\;(2k-1)=1+3+5+7+9=25}
El teorema de los cuatro cuadrados de Lagrange establece que cualquier número entero positivo puede ser escrito como la suma de cuatro cuadrados perfectos. Tres cuadrados no son suficientes para ser representados como números de la forma 4k(8m + 7). Un número positivo puede ser representado como una suma de dos cuadrados precisamente si la factorización en números primos no contiene potencias impares de la forma 4k + 3. Esta es una generalización del problema de Waring.
Si el último dígito de un número es 0, su cuadrado acaba en 00 y los precedentes dígitos deben ser también un cuadrado.
Si el último dígito de un número es 1 o 9, su cuadrado termina en 1 y el número formado por su precedentes debe ser divisible por cuatro.
Si el último dígito de un número es 2 u 8, su cuadrado concluye en 4 y el dígito anterior debe ser un número par.
Si el último dígito de un número es 3 o 7, su cuadrado tiene como cifra final el 9 y el número formado por los dígitos a su izquierda debe ser divisible entre cuatro.
Si el último dígito de un número es 4 o 6, su cuadrado remata en 6 y el dígito antecesor debe ser impar.
Si el último dígito de un número es 5, su cuadrado tiene 25 por cifras finales y los dígitos predecesores deben ser 0, 2, 06, o 56.
Los cuadrados perfectos, escritos en notación decimal, no terminan en 2, ni 3, tampoco en 7, menos en 8.
Ejemplos
12 = 1 Square number 1.png
22 = 4 Square number 4.png
32 = 9 Square number 9.png
42 = 16 Square number 16.png
52 = 25 Archivo:Square number 30.png
La cantidad de factores (divisores) de un número cuadrado perfecto es siempre impar. O dicho de otro modo, se cumple que para todo número natural que no es cuadrado perfecto, la cantidad de sus factores en un número par.
Todo número natural se puede descomponer en factores primos y sus correspondientes exponentes: {\displaystyle N=p_{1}^{a}.p_{2}^{b}.p_{3}^{c}...}{\displaystyle N=p_{1}^{a}.p_{2}^{b}.p_{3}^{c}...} ,
donde N es un número natural, {\displaystyle p_{1},p_{2},...}{\displaystyle p_{1},p_{2},...} son números primos y a,b,c... sus correspondientes exponentes. Dado que todos los posibles divisores de N son una combinación de este producto desde a=0,1,2,..a, b=0,1,2,...b y c=0,1,2,...c, la cantidad de divisores de N es:
n = (a+1).(b+1).(c+1)... donde n es la cantidad de factores o divisores de cualquier número natural.
Puesto que en un número cuadrado perfecto los exponentes a, b, c, ... son números pares, todos los factores de n serán impares y por tanto el producto también es un número impar. Esto puede comprobarse revisando el Anexo:Tabla de divisores
Los primeros 50 cuadrados perfectos son:
02 = 0 ((sucesión A000290 en OEIS))
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
102 = 100
112 = 121
122 = 144
132 = 169
142 = 196
152 = 225
162 = 256
172 = 289
182 = 324
192 = 361
202 = 400
212 = 441
222 = 484
232 = 529
242 = 576
252 = 625
262 = 676
272 = 729
282 = 784
292 = 841
302 = 900
312 = 961
322 = 1024
332 = 1089
342 = 1156
352 = 1225
362 = 1296
372 = 1369
382 = 1444
392 = 1521
402 = 1600
412 = 1681
422 = 1764
432 = 1849
442 = 1936
452 = 2025
462 = 2116
472 = 2209
482 = 2304
492 = 2401
502 = 2500
Cuadrados siguientes y anteriores a otro
Puede calcularse un cuadrado a partir del anterior o del anterior cuadrado par/impar respecto de uno dado.
La distancia entre un cuadrado y el siguiente, resulta de sumar al cuadrado primero, 2 veces el lado del siguiente y restarle 1: Si para 42 = 16, para 52 = 42 + (2 * 5) - 1 = 16 +.
Ejemplos:
cuadrado 0, calcular cuadrado 1: 00 + (2 * 1) - 1) = 00 + 02 -1 = 00 + 01 = 01
cuadrado 1, calcular cuadrado 2: 01 + (2 * 2) - 1) = 01 + 04 -1 = 01 + 03 = 04
cuadrado 2, calcular cuadrado 3: 04 + (2 * 3) - 1) = 04 + 06 -1 = 04 + 05 = 09
cuadrado 3, calcular cuadrado 4: 09 + (2 * 4) - 1) = 09 + 08 -1 = 09 + 07 = 16
cuadrado 4, calcular cuadrado 5: 16 + (2 * 5) - 1) = 16 + 10 -1 = 16 + 09 = 25
cuadrado 5, calcular cuadrado 6: 25 + (2 * 6) - 1) = 25 + 12 -1 = 25 + 11 = 36
cuadrado 6, calcular cuadrado 7: 36 + (2 * 7) - 1) = 36 + 14 -1 = 36 + 13 = 49
Otra manera de calcular la distancia es teniendo en cuenta la siguiente propiedad: La diferencia entre cada número cuadrado y el consecutivo(si se comienza con el 0) son todos los números impares, en orden ascendente:
0 + 1 = 1
1 + 3 = 4
4 + 5 = 9
9 + 7 = 16
Explicación paso a paso:
espero que te ayude :D