Matemáticas, pregunta formulada por alexrider48, hace 4 meses

cuanto mide la diagonal de un rectángulo cuya base mide 24 cm y su perímetro es de 98 cm

porfavor es para hoy estoy en la escuela ​

Respuestas a la pregunta

Contestado por rty45
1

Respuesta:

bueno sabemos que el perimetro de un rectangulo es :

P= 2a + 2b

a= altura

b= base

P=perimetro  

podemos encontrar la altura del rectangulo con los datos dados:

P= 2a + 2b

98cm=2a + 2(21cm)

   -2a = 42cm - 98 cm

       a= 28cm

ahora tenemos nuestra altura y base:

a= 28cm

b=21cm

si nos fijamos en el rectangulo que tenemos , nosotros podemos encontrar la diagonal trazando una de vertice a vertice...y se nos forman 2 triangulos rectangulos...por tanto utlizamos la siguiente formula :

teorema de pitagoras:  hipotenusa al cuadrado es igual a la suma de los cuadrados de sus catetos.

d² = a² + b²

d=hipotenusa ( diagonal)

a=cateto (altura)

b=cateto(base)

ahora solo tenemos que reemplazar :

d² = a² + b²

d² = (28cm)² + (21cm)²

d²  =784cm² + 441cm²

d²  =1225cm²

d=√1225cm²

d=35cm

entonces nuestra diagonal mide 35cm

Explicación paso a paso:


suruguayfloresdayana: la diagonal es 25
alexrider48: estas muy seguro que es 25?
suruguayfloresdayana: si
alexrider48: yo no entiendo este problema
alexrider48: está bien
anthonyolaquease2005: bro esta mal la respuesta
anthonyolaquease2005: la base es 24
Contestado por anthonyolaquease2005
2

Respuesta:

La diagonal mide 34,65cm

Explicación paso a paso:

calculamos la altura, sabemos que un rectángulo tiene dos lados iguales( base y altura), y sabemos su perímetro

24+24+2x=98

48+2x=98

2x=98-48

2x=50

x=50/2

x=25

aplicamos el teorema de Pitágoras

a^2+b^2=c^2

reemplazamos

25^2+24^2=d^2

625+576=d^2

1201=d^2

\sqrt{1201} =d

34,65=d

Otras preguntas